2023屆重慶市西南大學附屬中學數(shù)學九上期末統(tǒng)考模擬試題含解析_第1頁
2023屆重慶市西南大學附屬中學數(shù)學九上期末統(tǒng)考模擬試題含解析_第2頁
2023屆重慶市西南大學附屬中學數(shù)學九上期末統(tǒng)考模擬試題含解析_第3頁
2023屆重慶市西南大學附屬中學數(shù)學九上期末統(tǒng)考模擬試題含解析_第4頁
2023屆重慶市西南大學附屬中學數(shù)學九上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列語句中,正確的有()A.在同圓或等圓中,相等的圓心角所對的弧相等 B.平分弦的直徑垂直于弦C.長度相等的兩條弧相等 D.圓是軸對稱圖形,任何一條直徑都是它的對稱軸2.如圖是某體育館內的頒獎臺,其左視圖是()A. B.C. D.3.如圖,在平行四邊形中::若,則()A. B. C. D.4.已知關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是()A.k>-3 B.k≥-3 C.k≥0 D.k≥15.如圖,拋物線與軸交于、兩點,是以點(0,3)為圓心,2為半徑的圓上的動點,是線段的中點,連結.則線段的最大值是()A. B. C. D.6.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點A逆時針旋轉30°后得到Rt△ADE,點B經過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.7.三角形兩邊長分別是和,第三邊長是一元二次方程的一個實數(shù)根,則該三角形的面積是()A. B. C.或 D.或8.有一則笑話:媽媽正在給一對雙胞胎洗澡,先洗哥哥,再洗弟弟.剛把兩人洗完,就聽到兩個小家伙在床上笑.“你們笑什么?”媽媽問.“媽媽!”老大回答,“您給弟弟洗了兩回,可是還沒給我洗呢!”此事件發(fā)生的概率為()A. B. C. D.19.關于x的一元二次方程x2+ax﹣1=0的根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根10.圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為()A.(54+10)cm B.(54+10)cm C.64cm D.54cm二、填空題(每小題3分,共24分)11.投擲一枚質地均勻的骰子兩次,第一次出現(xiàn)的點數(shù)記為a,第二次出現(xiàn)的點數(shù)記為b.那么方程有解的概率是__________。12.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.13.如果將拋物線平移,頂點移到點P(3,-2)的位置,那么所得新拋物線的表達式為___________.14.如圖,拋物線與直線的兩個交點坐標分別為,則關于x的方程的解為________.15.已知小明身高,在某一時刻測得他站立在陽光下的影長為.若當他把手臂豎直舉起時,測得影長為,則小明舉起的手臂超出頭頂______.16.若雙曲線的圖象在第二、四象限內,則的取值范圍是________.17.如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(2,﹣4),B(m,2)兩點.當x滿足條件______________時,一次函數(shù)的值大于反比例函數(shù)值.18.在△ABC中,若AB=5,BC=13,AD是BC邊上的高,AD=4,則tanC=_____.三、解答題(共66分)19.(10分)如圖,已知拋物線y=ax2+bx+5經過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.(1)求該拋物線的表達式;(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.20.(6分)如圖,在中,,,.將繞點逆時針方向旋轉60°得到,連接,求線段的長.21.(6分)如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.(1)求證:DE是⊙O的切線.(2)若BF=2,BD=2,求⊙O的半徑.22.(8分)如圖,在平面直角坐標系中,直線分別交x軸、y軸于點B,C,正方形AOCD的頂點D在第二象限內,E是BC中點,OF⊥DE于點F,連結OE,動點P在AO上從點A向終點O勻速運動,同時,動點Q在直線BC上從某點Q1向終點Q2勻速運動,它們同時到達終點.(1)求點B的坐標和OE的長;(2)設點Q2為(m,n),當tan∠EOF時,求點Q2的坐標;(3)根據(jù)(2)的條件,當點P運動到AO中點時,點Q恰好與點C重合.①延長AD交直線BC于點Q3,當點Q在線段Q2Q3上時,設Q3Q=s,AP=t,求s關于t的函數(shù)表達式.②當PQ與△OEF的一邊平行時,求所有滿足條件的AP的長.23.(8分)如圖,折疊邊長為的正方形,使點落在邊上的點處(不與點,重合),點落在點處,折痕分別與邊、交于點、,與邊交于點.證明:(1);(2)若為中點,則;(3)的周長為.24.(8分)在2019年國慶期間,王叔叔的服裝店進回一種女裝,進價為400元,他首先在進價的基礎上增加100元,由于銷量非常好,他又連續(xù)兩次漲價,結果標價比進價的2倍還多45元,求王叔叔這兩次漲價的平均增長率是百分之多少?25.(10分)在平行四邊形ABCD中,點E是AD邊上的點,連接BE.(1)如圖1,若BE平分∠ABC,BC=8,ED=3,求平行四邊形ABCD的周長;(2)如圖2,點F是平行四邊形外一點,F(xiàn)B=CD.連接BF、CF,CF與BE相交于點G,若∠FBE+∠ABC=180°,點G是CF的中點,求證:2BG+ED=BC.26.(10分)為了了解全校名同學對學校設置的體操、籃球、足球、跑步、舞蹈等課外活動項目的喜愛情況,在全校范圍內隨機抽取了若干名同學,對他們喜愛的項目(每人選一項)進行了問卷調查,將數(shù)據(jù)進行了統(tǒng)計,并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整),請回答下列問題.(1)在這次問卷調查中,共抽查了_________名同學;(2)補全條形統(tǒng)計圖;(3)估計該校名同學中喜愛足球活動的人數(shù);(4)在體操社團活動中,由于甲、乙、丙、丁四人平時的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加體操大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】試題分析:平分弦(不是直徑)的直徑垂直于弦,故B錯誤;長度和度數(shù)都相等的兩條弧相等,故C錯誤;圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸,故D錯誤;則本題選A.2、D【分析】找到從左面看所得到的圖形即可.【詳解】解:從左邊看去是上下兩個矩形,下面的比較高.故選D.【點睛】本題考查了簡單組合體的三視圖,解題的關鍵是掌握三視圖的觀察方法.3、A【分析】先根據(jù)平行四邊形的性質得到AB=CD,AB∥CD,再計算出AE:CD=1:3,接著證明△AEF∽△CDF,然后根據(jù)相似三角形的性質求解.【詳解】∵四邊形ABCD為平行四邊形,

∴AB=CD,AB∥CD,

∵,

∴,

∴,

∵AE∥CD,

∴,

∴,

∴.

故選:A.【點睛】本題考查的是相似三角形的判定與性質,熟知相似三角形面積的比等于相似比的平方是解答此題的關鍵.4、D【解析】根據(jù)?>0且k-1≥0列式求解即可.【詳解】由題意得()2-4×1×(-1)>0且k-1≥0,解之得k≥1.故選D.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.5、C【分析】根據(jù)拋物線解析式可求得點A(-4,0),B(4,0),故O點為AB的中點,又Q是AP上的中點可知OQ=BP,故OQ最大即為BP最大,即連接BC并延長BC交圓于點P時BP最大,進而即可求得OQ的最大值.【詳解】∵拋物線與軸交于、兩點∴A(-4,0),B(4,0),即OA=4.在直角三角形COB中BC=∵Q是AP上的中點,O是AB的中點∴OQ為△ABP中位線,即OQ=BP又∵P在圓C上,且半徑為2,∴當B、C、P共線時BP最大,即OQ最大此時BP=BC+CP=7OQ=BP=.【點睛】本題考查了勾股定理求長度,二次函數(shù)解析式求點的坐標及線段長度,中位線,與圓相離的點到圓上最長的距離,解本題的關鍵是將求OQ最大轉化為求BP最長時的情況.6、A【分析】先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉的性質得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點睛】本題考查扇形面積計算,熟記扇形面積公式,采用作差法計算面積是解題的關鍵.7、D【分析】先利用因式分解法解方程得到所以,,再分類討論:當?shù)谌呴L為6時,如圖,在中,,,作,則,利用勾股定理計算出,接著計算三角形面積公式;當?shù)谌呴L為10時,利用勾股定理的逆定理可判斷此三角形為直角三角形,然后根據(jù)三角形面積公式計算三角形面積.【詳解】解:,或,所以,,I.當?shù)谌呴L為6時,如圖,在中,,,作,則,,所以該三角形的面積;II.當?shù)谌呴L為10時,由于,此三角形為直角三角形,所以該三角形的面積,綜上所述:該三角形的面積為24或.故選:D.【點睛】本題考查的是利用因式分解法解一元二次方程,等腰三角形的性質,勾股定理及其逆定理,解答此題時要注意分類討論,不要漏解.8、A【分析】根據(jù)概率是指某件事發(fā)生的可能性為多少解答即可.【詳解】解:此事件發(fā)生的概率故選A.【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.9、D【解析】∵△=>0,∴方程有兩個不相等的實數(shù)根.故選D.10、C【分析】過A作AE⊥CP于E,過B作BF⊥DQ于F,則可得AE和BF的長,依據(jù)端點A與B之間的距離為10cm,即可得到可以通過閘機的物體的最大寬度.【詳解】如圖所示,過A作AE⊥CP于E,過B作BF⊥DQ于F,則Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵點A與B之間的距離為10cm,∴通過閘機的物體的最大寬度為27+10+27=64(cm),故選C.【點睛】本題主要考查了特殊角的三角函數(shù)值,特殊角的三角函數(shù)值應用廣泛,一是它可以當作數(shù)進行運算,二是具有三角函數(shù)的特點,在解直角三角形中應用較多.二、填空題(每小題3分,共24分)11、【分析】畫樹狀圖展示所有36種等可能的結果數(shù),再找出使,即的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:共有36種等可能的結果數(shù),其中使,即的有19種,

方程有解的概率是,故答案為:.【點睛】本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件的結果數(shù)目m,然后根據(jù)概率公式求出事件的概率.12、2.【分析】把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為2.【點睛】本題考查了求代數(shù)式的值和一元二次方程的解,解此題的關鍵是能求出2m2﹣3m=2.13、【解析】拋物線y=?2x2平移,使頂點移到點P(3,-2)的位置,所得新拋物線的表達式為y=?2(x-3)2-2.故答案為y=?2(x-3)2-2.14、【詳解】∵拋物線與直線的兩個交點坐標分別為,∴方程組的解為,,即關于x的方程的解為.15、0.54【分析】在同一時刻,物體的高度和影長成比例,根據(jù)此規(guī)律列方程求解.【詳解】解:設小明舉起的手臂超出頭頂xm,根據(jù)題意得,,解得x=0.54即舉起的手臂超出頭頂0.54m.故答案為:0.54.【點睛】本題考查同一時刻物體的高度和影長成比例的投影規(guī)律,根據(jù)規(guī)律列比例式求解是解答此題的關鍵.,16、m<8【分析】對于反比例函數(shù):當k>0時,圖象在第一、三象限;當k<0時,圖象在第二、四象限.【詳解】由題意得,解得故答案為:【點睛】本題考查的是反比例函數(shù)的性質,本題屬于基礎應用題,只需學生熟練掌握反比例函數(shù)的性質,即可完成.17、x<﹣4或0<x<2【分析】(1)根據(jù)一次函數(shù)y=-x+b的圖象與反比例函數(shù)(a≠0)的圖象相交于A(2,﹣4),B(m,2)兩點,可以求得a=-8,m=-4,根據(jù)函數(shù)圖象和點A、B的坐標可以得到當x為何值時,一次函數(shù)值大于反比例函數(shù)值.【詳解】∵一次函數(shù)y=-x+b的圖象與反比例函數(shù)的圖象相交于A(2,-4)、B(m,2)兩點,∴將x=2,y=-4代入得,a=-8;∴將x=m,y=2代入,得m=-4,∴點B(-4,2),∵點A(2,-4),點B(-4,2),∴由函數(shù)的圖象可知,當x<﹣4或0<x<2時,一次函數(shù)值大于反比例函數(shù)值.故答案為:x<﹣4或0<x<2.【點睛】本題考查反比例函數(shù)和一次函數(shù)的交點問題,解題的關鍵是明確題意,利用數(shù)形結合的思想,找出所求問題需要的條件.18、或【分析】先根據(jù)勾股定理求出BD的長,再分高AD在△ABC內部和外部兩種情況畫出圖形求出CD的長,然后利用正切的定義求解即可.【詳解】解:在直角△ABD中,由勾股定理得:BD==3,若高AD在△ABC內部,如圖1,則CD=BC﹣BD=10,∴tanC=;若高AD在△ABC外部,如圖2,則CD=BC+BD=16,∴tanC=.故答案為:或.【點睛】本題考查了勾股定理和銳角三角函數(shù)的定義,屬于常見題型,正確畫出圖形、全面分類、熟練掌握基本知識是解答的關鍵.三、解答題(共66分)19、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解析】(1)將點A、B坐標代入二次函數(shù)表達式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1,設點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標代入二次函數(shù)表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1…②,設點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設直線BP與CD交于點H,當點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點P(﹣,﹣);當點P(P′)在直線BC上方時,∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達式為:y=2x+s,將點B坐標代入上式并解得:s=5,即直線BP′的表達式為:y=2x+5…⑥,聯(lián)立①⑥并解得:x=0或﹣4(舍去﹣4),故點P(0,5);故點P的坐標為P(﹣,﹣)或(0,5).【點睛】本題考查的是二次函數(shù),熟練掌握拋物線的性質是解題的關鍵.20、【分析】連BB',根據(jù)旋轉的性質及已知條件可知△ABB'是等邊三角形,進而得出∠CBB'=90°,再由勾股定理計算的長度即可.【詳解】解:連BB'.∵∠ACB=90°,∠BAC=60°∴∠ABC=30°,AB=2AC=4,BC=由旋轉可知:AB=AB',∠BAB'=60°∴△ABB'是等邊三角形∴BB'=AB=4,∠ABB'=60°∴∠CBB'=90°∴B'C=【點睛】本題考查了旋轉的性質、直角三角形的性質、等邊三角形的性質,靈活運用旋轉的性質是解題的關鍵.21、(1)見解析;(2).【分析】(1)證明△DAF≌△DCE,可得∠DFA=∠DEC,證出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切線.

(2)在Rt△ADF和Rt△BDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的長即可.【詳解】(1)證明:如圖1,連接DF,∵四邊形ABCD為菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD是⊙O的直徑,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半徑,∴DE是⊙O的切線;(2)解:如圖2,∵AD是⊙O的直徑,∴∠DFA=90°,∴∠DFB=90°,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴∴AD=1.∴⊙O的半徑為.【點睛】此題考查圓的綜合,圓周角定理,菱形的性質,切線的判定,三角形全等的性質和判定,勾股定理等知識,解題關鍵是根據(jù)勾股定理列方程解決問題.22、(1)(8,0),;(2)(6,1);(3)①,②的長為或.【分析】(1)令y=0,可得B的坐標,利用勾股定理可得BC的長,即可得到OE;(2)如圖,作輔助線,證明△CDN∽△MEN,得CN=MN=1,計算EN的長,根據(jù)面積法可得OF的長,利用勾股定理得OF的長,由和,可得結論;(3)①先設s關于t成一次函數(shù)關系,設s=kt+b,根據(jù)當點P運動到AO中點時,點Q恰好與點C重合,得t=2時,CD=4,DQ3=2,s=,根據(jù)Q3(?4,6),Q2(6,1),可得t=4時,s=,利用待定系數(shù)法可得s關于t的函數(shù)表達式;②分三種情況:(i)當PQ∥OE時,根據(jù),表示BH的長,根據(jù)AB=12,列方程可得t的值;(ii)當PQ∥OF時,根據(jù)tan∠HPQ=tan∠CDN=,列方程為2t?2=(7?t),可得t的值.(iii)由圖形可知PQ不可能與EF平行.【詳解】解:(1)令,則,∴,∴為.∵為,在中,.又∵為中點,∴.(2)如圖,作于點,則,∴,∴,∴,∴.∵,∴,由勾股定理得,∴,∴.∵,∴,∴為.(3)①∵動點同時作勻速直線運動,∴關于成一次函數(shù)關系,設,將和代入得,解得,∴.②(ⅰ)當時,(如圖),,作軸于點,則.∵,又∵,∴,∴,∴,∴.(ⅱ)當時(如圖),過點作于點,過點作于點,由得.∵,∴,∴,∴.∵,∴,∴,∴.(ⅲ)由圖形可知不可能與平行.綜上所述,當與的一邊平行時,的長為或.【點睛】此題是一次函數(shù)的綜合題,主要考查了:用待定系數(shù)法求一次函數(shù)關系式,三角形相似的性質和判定,三角函數(shù)的定義,勾股定理,正方形的性質等知識,并注意運用分類討論和數(shù)形結合的思想解決問題.23、(1)詳見解析;(2)詳見解析;(3)詳見解析.【分析】(1)根據(jù)折疊和正方形的性質結合相似三角形的判定定理即可得出答案;(2)設BE=x,利用勾股定理得出x的值,再利用相似三角形的性質證明即可得出答案;(3)設BM=x,AM=a-x,利用勾股定理和相似三角形的性質即可得出答案.【詳解】證明:(1)∵四邊形是正方形,∴,∴,∵為折痕,∴,∴,∴,在與中∵,,∴;(2)∵為中點,∴,設,則,在中,,∴,即,∴,∴,,由(1)知,,∴,∴,,∴;(3)設,則,,在中,,∴,即,解得:,由(1)知,,∴,∵,∴.【點睛】本題考查的是相似三角形的綜合,涉及的知識點有折疊的性質、正方形的性質、勾股定理和相似三角形,難度系數(shù)較大.24、【分析】設甲賣家這兩次漲價的平均增長率為x,則首次標價為500(1+x),二次標價為500(1+x)(1+x)即500(1+x)2,據(jù)此即可列出方程.【詳解】解:設王叔叔這兩次漲價的平均增長率為x,根據(jù)題意得,解之得,,(不符合題意,故舍去)∴王叔叔這兩次漲價的平均增長率為【點睛】本題考查了一元二次方程的應用.解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程,再求解.25、(1)26;(2)見解析【分析】(1)由平行四邊形的性質得出AD=BC=8,AB=CD,AD∥BC,由平行線的性質得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,則AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出結果;(2)連接CE,過點C作CK∥BF交BE于K,則∠FBG=∠CKG,由點G是CF的中點,得出FG=CG,由AAS證得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四邊形的性質得出∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,由平行線的性質得出∠DEC=∠BCE,∠AEB=∠KBC,易證∠EKC=∠D,∠CKB=∠BAE,由AAS證得△AEB≌△KBC,得出BC=BE,則∠KEC=∠BCE,推出∠KEC=∠DEC,由AAS證得△KEC≌△DEC,得出KE=ED

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論