2022年湖北省鄂州地區(qū)數(shù)學九上期末學業(yè)水平測試試題含解析_第1頁
2022年湖北省鄂州地區(qū)數(shù)學九上期末學業(yè)水平測試試題含解析_第2頁
2022年湖北省鄂州地區(qū)數(shù)學九上期末學業(yè)水平測試試題含解析_第3頁
2022年湖北省鄂州地區(qū)數(shù)學九上期末學業(yè)水平測試試題含解析_第4頁
2022年湖北省鄂州地區(qū)數(shù)學九上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.2.在△ABC中,D是AB中點,E是AC中點,若△ADE的面積是3,則△ABC的面積是()A.3 B.6 C.9 D.123.某專賣店專營某品牌女鞋,店主對上一周中不同尺碼的鞋子銷售情況統(tǒng)計如表:尺碼3536373839平均每天銷售數(shù)量(雙)281062該店主決定本周進貨時,增加一些37碼的女鞋,影響該店主決策的統(tǒng)計量是()A.平均數(shù) B.方差 C.眾數(shù) D.中位數(shù)4.如圖,在正方形中,點為邊的中點,點在上,,過點作交于點.下列結論:①;②;③;④.正確的是(

).A.①② B.①③ C.①③④ D.③④5.若函數(shù)y=(a-1)x2-4x+2a的圖象與x軸有且只有一個交點,則a的值為().A.-1或2 B.-1或1C.1或2 D.-1或2或16.在中,,,,則直角邊的長是()A. B. C. D.7.方程的根是()A. B. C., D.,8.如圖,在中,.以為直徑作半圓,交于點,交于點,若,則的度數(shù)是()A. B. C. D.9.如圖,在?ABCD中,AB=12,AD=8,∠ABC的平分線交CD于點F,交AD的延長線于點E,CG⊥BE,垂足為G,若EF=2,則線段CG的長為()A. B. C. D.10.在平面直角坐標系中,對于二次函數(shù),下列說法中錯誤的是()A.的最小值為1B.圖象頂點坐標為(2,1),對稱軸為直線C.當時,的值隨值的增大而增大,當時,的值隨值的增大而減小D.它的圖象可以由的圖象向右平移2個單位長度,再向上平移1個單位長度得到11.若反比例函數(shù)的圖象過點(-2,1),則這個函數(shù)的圖象一定過點()A.(2,-1) B.(2,1) C.(-2,-1) D.(1,2)12.如圖,⊙是的外接圓,,則的度數(shù)為()A.60° B.65° C.70° D.75°二、填空題(每題4分,共24分)13.如圖,某小區(qū)規(guī)劃在一個長30m、寬20m的長方形ABCD上修建三條同樣寬的通道,使其中兩條與AB平行,另一條與AD平行,其余部分種花草.要使每一塊花草的面積都為78m2,那么通道的寬應設計成多少m?設通道的寬為xm,由題意列得方程____________14.計算:﹣(﹣π)0+()﹣1=_____.15.如圖所示,在中,,點是重心,聯(lián)結,過點作,交于點,若,,則的周長等于______.16.已知是關于x的一元二次方程的一個解,則此方程的另一個解為____.17.二次函數(shù)y=x2﹣bx+c的圖象上有兩點A(3,﹣2),B(﹣9,﹣2),則此拋物線的對稱軸是直線x=________.18.已知:如圖,△ABC的面積為16,點D、E分別是邊AB、AC的中點,則△ADE的面積為______.三、解答題(共78分)19.(8分)游樂園新建的一種新型水上滑道如圖,其中線段表示距離水面(x軸)高度為5m的平臺(點P在y軸上).滑道可以看作反比例函數(shù)圖象的一部分,滑道可以看作是二次函數(shù)圖象的一部分,兩滑道的連接點B為二次函數(shù)的頂點,且點B到水面的距離,點B到y(tǒng)軸的距離是5m.當小明從上而下滑到點C時,與水面的距離,與點B的水平距離.(1)求反比例函數(shù)的關系式及其自變量的取值范圍;(2)求整條滑道的水平距離;(3)若小明站在平臺上相距y軸的點M處,用水槍朝正前方向下“掃射”,水槍出水口N距離平臺,噴出的水流成拋物線形,設這條拋物線的二次項系數(shù)為p,若水流最終落在滑道上(包括B、D兩點),直接寫出p的取值范圍.20.(8分)現(xiàn)有甲、乙、丙三人組成的籃球訓練小組,他們?nèi)酥g進行互相傳球練習,籃球從一個人手中隨機傳到另外一個人手中計作傳球一次,共連續(xù)傳球三次.(1)若開始時籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是;(2)若開始時籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)21.(8分)如圖,已知拋物線與x軸交于點A、B,與y軸分別交于點C,其中點,點,且.(1)求拋物線的解析式;(2)點P是線段AB上一動點,過P作交BC于D,當面積最大時,求點P的坐標;(3)點M是位于線段BC上方的拋物線上一點,當恰好等于中的某個角時,求點M的坐標.22.(10分)如圖,等邊三角形ABC放置在平面直角坐標系中,已知A(0,0),B(4,0),反比例函數(shù)的圖象經(jīng)過點C.求點C的坐標及反比例函數(shù)的解析式.23.(10分)某商店購進一種商品,每件商品進價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關系數(shù)據(jù)如下:x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關系,根據(jù)上表,求出y與x之間的關系式(不寫出自變量x的取值范圍);(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應定為多少元?(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?24.(10分)已知正比例函數(shù)y=k1x(k1≠0)與反比例函數(shù)的圖象交于A、B兩點,點A的坐標為(2,1).(1)求正比例函數(shù)、反比例函數(shù)的表達式;(2)求點B的坐標.25.(12分)如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,(1)求證:AC2=AB?AD;(2)求證:CE∥AD;(3)若AD=4,AB=6,求的值.26.如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(-3,1),B(-1,3),C(0,1).(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后的△A1B1C1,并寫出A1,B1的坐標;(2)平移△ABC,若點A的對應點A2的坐標為(-5,-3),畫出平移后的△A2B2C2,并寫出B2,C2的坐標;(3)若△A2B2C2和△A1B1C1關于點P中心對稱,請直接寫出對稱中心P的坐標.

參考答案一、選擇題(每題4分,共48分)1、B【解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設a=4,b=3,則c=5,∵tanb=故選B2、D【分析】根據(jù)相似三角形的性質(zhì)與判定即可求出答案.【詳解】解:∵D是AB中點,E是AC中點,∴DE是△ABC的中位線,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故選:D.【點睛】本題考查了相似三角形的面積問題,掌握相似三角形的性質(zhì)與判定是解題的關鍵.3、C【分析】平均數(shù)、中位數(shù)、眾數(shù)是描述一組數(shù)據(jù)集中程度的統(tǒng)計量;方差是描述一組數(shù)據(jù)離散程度的統(tǒng)計量.銷量大的尺碼就是這組數(shù)據(jù)的眾數(shù).【詳解】由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故影響該店主決策的統(tǒng)計量是眾數(shù).故選:C.【點睛】本題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.4、C【分析】連接.根據(jù)“HL”可證≌,利用全等三角形的對應邊相等,可得,據(jù)此判斷①;根據(jù)“”可證≌,可得,從而可得,據(jù)此判斷②;由(2)知,可證,據(jù)此判斷③;根據(jù)兩角分別相等的兩個三角形相似,可證∽∽,可得,從而可得,據(jù)此判斷④.【詳解】解:(1)連接.如圖所示:

∵四邊形ABCD是正方形,

∴∠ADC=90°,

∵FG⊥FC,

∴∠GFC=90°,

在Rt△CFG與Rt△CDG中,∴≌.∴...①正確.(2)由(1),垂直平分.∴∠EDC+∠2=90°,

∵∠1+∠EDC=90°,∴.∵四邊形ABCD是正方形,

∴AD=DC=AB,∠DAE=∠CDG=90°,∴≌.∴.∵為邊的中點,∴為邊的中點.∴.∴②錯誤.(3)由(2),得.∴.③正確.(4)由(3),可得∽∽.∴∴.∴④正確.故答案為:C.【點睛】本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定與性質(zhì)、三角形中位線定理、線段的垂直平分線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題.5、D【解析】當該函數(shù)是一次函數(shù)時,與x軸必有一個交點,此時a-1=0,即a=1.當該函數(shù)是二次函數(shù)時,由圖象與x軸只有一個交點可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2.綜上所述,a=1或-1或2.故選D.6、B【分析】根據(jù)余弦的定義求解.【詳解】解:∵在Rt△ABC中,∠C=90°,cosB=,

∴BC=10cos40°.

故選:B.【點睛】本題考查解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.7、D【分析】先移項然后通過因式分解法解一元二次方程即可.【詳解】或故選:D.【點睛】本題主要考查因式分解法解一元二次方程,掌握因式分解法是解題的關鍵.8、A【分析】連接BE、AD,根據(jù)直徑得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度數(shù),根據(jù)圓周角定理求出即可.【詳解】解:連接BE、AD,

∵AB是圓的直徑,

∴∠ADB=∠AEB=90°,

∴AD⊥BC,

∵AB=AC,∠C=70°,

∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°

∴=50°.故選A.【點睛】本題考查了圓周角定理,等腰三角形的性質(zhì)等知識,準確作出輔助線是解題的關鍵.9、C【解析】∵∠ABC的平分線交CD于點F,∴∠ABE=∠CBE,∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根據(jù)勾股定理得,CG===,故選C.點睛:此題是平行四邊形的性質(zhì),主要考查了角平分線的定義,平行線分線段成比例定理,等腰三角形的性質(zhì)和判定,勾股定理,解本題的關鍵是求出AE,記?。侯}目中出現(xiàn)平行線和角平分線時,極易出現(xiàn)等腰三角形這一特點.10、C【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),,∴該函數(shù)的圖象開口向上,對稱軸為直線,頂點為,當時,有最小值1,當時,的值隨值的增大而增大,當時,的值隨值的增大而減??;故選項A、B的說法正確,C的說法錯誤;根據(jù)平移的規(guī)律,的圖象向右平移2個單位長度得到,再向上平移1個單位長度得到;故選項D的說法正確,故選C.【點睛】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,二次函數(shù)圖象與幾何變換,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.11、A【解析】先把(-2,1)代入y=求出k得到反比例函數(shù)解析式為y=,然后根據(jù)反比例函數(shù)圖象上點的坐標特征,通過計算各點的橫縱坐標的積進行判斷.【詳解】把(-2,1)代入y=得k=-2×1=-2,

所以反比例函數(shù)解析式為y=,

因為2×(-1)=-2,2×1=2,-2×(-1)=2,1×2=2,

所以點(2,-1)在反比例函數(shù)y=的圖象上.

故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.12、C【分析】連接OB,根據(jù)等腰三角形的性質(zhì)和圓周角定理即可得到結論.【詳解】連接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180?20?20=140,∴∠A=140×=70,故選:C.【點睛】本題考查了圓周角定理,要知道,同弧所對的圓周角等于它所對圓心角的一半.二、填空題(每題4分,共24分)13、(30-2x)(20-x)=6×1.【解析】解:設道路的寬為xm,將6塊草地平移為一個長方形,長為(30-2x)m,寬為(20-x)m.可列方程(30-2x)(20-x)=6×1.14、1【分析】首先計算乘方、開方,然后從左向右依次計算,求出算式的值是多少即可.【詳解】解:﹣(﹣π)0+()﹣1=2﹣1+2=1.故答案為:1.【點睛】此題考查的是實數(shù)的混合運算,掌握立方根的定義、零指數(shù)冪的性質(zhì)和負指數(shù)冪的性質(zhì)是解決此題的關鍵.15、10【分析】延長AG交BC于點H,由G是重心,推出,再由得出,從而可求AD,DG,AG的長度,進而答案可得.【詳解】延長AG交BC于點H∵G是重心,∴∵∴∵,AH是斜邊中線,∴∴∴∴的周長等于故答案為:10【點睛】本題主要考查三角形重心的性質(zhì)及平行線分線段成比例,掌握三角形重心的性質(zhì)是解題的關鍵.16、【分析】將x=-3代入原方程,解一元二次方程即可解題.【詳解】解:將x=-3代入得,a=-1,∴原方程為,解得:x=1或-3,【點睛】本題考查了含參的一元二次方程的求解問題,屬于簡單題,熟悉概念是解題關鍵.17、-3【分析】觀察A(3,﹣2),B(﹣9,﹣2)兩點坐標特征,縱坐標相等,可知A,B兩點關于拋物線對稱軸對稱,對稱軸為經(jīng)過線段AB中點且平行于y軸的直線.【詳解】解:∵A(3,﹣2),B(﹣9,﹣2)兩點縱坐標相等,∴A,B兩點關于對稱軸對稱,根據(jù)中點坐標公式可得線段AB的中點坐標為(-3,-2),∴拋物線的對稱軸是直線x=-3.【點睛】本題考查二次函數(shù)圖象的對稱性及對稱軸的求法,常見確定對稱軸的方法有,已知解析式則利用公式法確定對稱軸,已知對稱點利用對稱性確定對稱軸,根據(jù)條件確定合適的方法求對稱軸是解答此題的關鍵.18、4【分析】根據(jù)三角形中位線的性質(zhì)可得DE//BC,,即可證明△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方即可得答案.【詳解】∵點D、E分別是邊AB、AC的中點,∴DE為△ABC的中位線,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面積為16,∴S△ADE=×16=4.故答案為:4【點睛】本題考查三角形中位線的性質(zhì)及相似三角形的判定與性質(zhì),三角形的中位線平行于第三邊,且等于第三邊的一半;熟練掌握相似三角形的面積比等于相似比的平方是解題關鍵.三、解答題(共78分)19、(1),;(2)7m;(3).【分析】(1)在題中,BE=2,B到y(tǒng)軸的距離是5,即反比例函數(shù)圖象上一點的橫坐標和縱坐標都已告知,則可求出比例系數(shù)k;(2)根據(jù)B,C的坐標求出二次函數(shù)解析式,得到點D坐標,即OD長度再減去AP長度,可得滑道ABCD的水平距離;(3)由題意可知點N為拋物線的頂點,設水流所成拋物線的表達式為,通過計算水流分別落到點B和點D可以得出p的取值范圍.【詳解】解:(1)∵,點B到y(tǒng)軸的距離是5,∴點B的坐標為.設反比例函數(shù)的關系式為,則,解得.∴反比例函數(shù)的關系式為.∵當時,,即點A的坐標為,∴自變量x的取值范圍為;(2)由題意可知,二次函數(shù)圖象的頂點為,點C坐標為.設二次函數(shù)的關系式為,則,解得.∴二次函數(shù)的關系式為.當時,解得(舍去),∴點D的坐標為,則.∴整條滑道的水平距離為:;(3)p的取值范圍為.由題意可知,點N坐標為(,即,為拋物線的頂點.設水流所成拋物線的表達式為.當水流落在點時,由,解得;當水流落在點時,由,解得.∴p的取值范圍為.【點睛】此題主要考查了反比例函數(shù)和二次函數(shù)的基本性質(zhì)和概念,以及用待定系數(shù)法求函數(shù)的解析式,難度較大.錯因分析較難題.失分原因是(1)沒有掌握利用待定系數(shù)法求反比例函數(shù)解析式;(2)沒有掌握二次函數(shù)的基本性質(zhì),利用二次函數(shù)的性質(zhì)求得點D的坐標;(3)沒有掌握利用頂點式求二次函數(shù)的解析式,根據(jù)B,D兩點的坐標進而求得p的取值范圍.20、(1)經(jīng)過第一次傳球后,籃球落在丙的手中的概率為;(2)籃球傳到乙的手中的概率為.【分析】(1)根據(jù)概率公式即可得出答案;

(2)根據(jù)題意先畫出樹狀圖得出所有等情況數(shù),由樹形圖可知三次傳球有8種等可能結果,三次傳球后,籃球傳到乙的手中的結果有3種,由概率公式即可得出答案.【詳解】(1)經(jīng)過第一次傳球后,籃球落在丙的手中的概率為;故答案為;(2)畫樹狀圖如圖所示:由樹形圖可知三次傳球有8種等可能結果,三次傳球后,籃球傳到乙的手中的結果有3種,∴籃球傳到乙的手中的概率為.【點睛】本題考查用列表法或樹狀圖法求概率以及概率公式.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.21、(1);(2)當時,S最大,此時;(3)或【分析】(1)先根據(jù)射影定理求出點,設拋物線的解析式為:,將點代入求出,然后化為一般式即可;(2)過點P作y軸的平行線交BC于點E,設,用待定系數(shù)法分別求出直線BC,直線AC,直線PD的解析式,表示出點E,點D的坐標,然后根據(jù)三角形面積公式列出二次函數(shù)解析式,利用二次函數(shù)的性質(zhì)求解即可;(3)分兩種情況求解:當時和當時.【詳解】(1)∵,,∴,.∵,∴由射影定理可得:,∴,∴點,設拋物線的解析式為:,將點代入上式得:,∴拋物線的解析式為:;(2)過點P作y軸的平行線交BC于點E,設,設,把,代入得,∴,∴,∴,同樣的方法可求,故可設,把代入得,聯(lián)立解得:,∴,,故當時,S最大,此時;(3)由題知,,當時,,∴點C與點M關于對稱軸對稱,∴;當時,過M作于F,過F作y軸的平行線,交x軸于G,交過M平行于x軸的直線于K,∵∠,BFM=∠BGF,∴△MFK∽△FGB,同理可證:,∴,,設,則,∴,∴,代入,解得,或(舍去),∴,故或.【點睛】本題考查了待定系數(shù)法求二次函數(shù)、一次函數(shù)解析式,二次函數(shù)的圖像與性質(zhì),一次函數(shù)圖像交點坐標與二元一次方程組解的關系,相似三角形的判定與性質(zhì),以及分類討論的數(shù)學思想,難度較大,屬中考壓軸題.22、點C坐標為(2,2),y=【分析】過C點作CD⊥x軸,垂足為D,設反比例函數(shù)的解析式為y=,根據(jù)等邊三角形的知識求出AC和CD的長度,即可求出C點的坐標,把C點坐標代入反比例函數(shù)解析式求出k的值.【詳解】解:過C點作CD⊥x軸,垂足為D,設反比例函數(shù)的解析式為y=,∵△ABC是等邊三角形,∴AC=AB=4,∠CAB=60°,∴AD=3,CD=sin60°×4=×4=2,∴點C坐標為(2,2),∵反比例函數(shù)的圖象經(jīng)過點C,∴k=4,∴反比例函數(shù)的解析式:y=;【點睛】考查了待定系數(shù)法確定反比例函數(shù)的解析式的知識,解題的關鍵是根據(jù)題意求得點C的坐標,難度不大.23、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元時利潤最大.【解析】試題分析:(1)設一次函數(shù)解析式,將表格中任意兩組x,y值代入解出k,b,即可求出該解析式;(2)利潤等于單件利潤乘以銷售量,而單件利潤又等于每件商品的銷售價減去進價,從而建立每件商品的銷售價與利潤的一元二次方程求解;(3)將w替換上題中的150元,建立w與x的二次函數(shù),化成一般式,看二次項系數(shù),討論x取值,從而確定每件商品銷售價定為多少元時利潤最大.試題解析:(1)設該函數(shù)的表達式為y=kx+b(k≠0),根據(jù)題意,得,解得,∴該函數(shù)的表達式為y=-2x+100;(2)根據(jù)題意得:(-2x+100)(x-30)="150",解這個方程得,x1=35,x2=45∴每件商品的銷售價定為35元或45元時日利潤為150元.(3)根據(jù)題意得:w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2<0,則拋物線開口向下,函數(shù)有最大值,即當x=40時,w的值最大,∴當銷售單價為40元時獲得利潤最大.考點:一次函數(shù)與二次函數(shù)的實際應用.24、(1)正比例函數(shù)、反比例函數(shù)的表達式為:,;(2)B點坐標是(-2,-1)【解析】試題分析:(1)把點A、B的坐標分別代入函數(shù)y=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論