下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.小兵身高1.4m,他的影長是2.1m,若此時學(xué)校旗桿的影長是12m,那么旗桿的高度()A.4.5m B.6m C.7.2m D.8m2.在Rt△ABC中,∠C=90°,AC=9,BC=12,則其外接圓的半徑為()A.15 B.7.5 C.6 D.33.用頻率估計概率,可以發(fā)現(xiàn),某種幼樹在一定條件下移植成活的概率為0.9,下列說法正確的是(
)A.種植10棵幼樹,結(jié)果一定是“有9棵幼樹成活”B.種植100棵幼樹,結(jié)果一定是“90棵幼樹成活”和“10棵幼樹不成活”C.種植10n棵幼樹,恰好有“n棵幼樹不成活”D.種植n棵幼樹,當(dāng)n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.94.已知點,,在二次函數(shù)的圖象上,則的大小關(guān)系是()A. B. C. D.5.已知點A(x1,y1),B(x2,y2)在雙曲線y=上,如果x1<x2,而且x1?x2>0,則以下不等式一定成立的是()A.y1+y2>0 B.y1﹣y2>0 C.y1?y2<0 D.<06.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E,B、E是半圓弧的三等分點,弧BE的長為π,則圖中陰影部分的面積為()A. B. C. D.7.某天的體育課上,老師測量了班級同學(xué)的身高,恰巧小明今日請假沒來,經(jīng)過計算得知,除了小明外,該班其他同學(xué)身高的平均數(shù)為172,方差為,第二天,小明來到學(xué)校,老師幫他補測了身高,發(fā)現(xiàn)他的身高也是172,此時全班同學(xué)身高的方差為,那么與的大小關(guān)系是()A. B. C. D.無法判斷8.如圖,將繞點逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為,得到,這時點,,恰好在同一直線上,下列結(jié)論一定正確的是()A. B. C. D.9.如圖,在中,所對的圓周角,若為上一點,,則的度數(shù)為()A.30° B.45° C.55° D.60°10.如圖,的正切值為()A. B. C. D.11.已知關(guān)于x的一元二次方程(k﹣1)x2﹣2x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠112.若一元二次方程的一個根為,則其另一根是()A.0 B.1 C. D.2二、填空題(每題4分,共24分)13.現(xiàn)有5張正面分別標(biāo)有數(shù)字0,1,2,3,4的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,則使得關(guān)于的一元二次方程有實數(shù)根,且關(guān)于的分式方程有整數(shù)解的概率為.14.已知反比例函數(shù)y=的圖象位于第一、第三象限,則k的取值范圍是_____.15.如果,那么=.16.如圖,現(xiàn)有測試距離為5m的一張視力表,表上一個E的高AB為2cm,要制作測試距離為3m的視力表,其對應(yīng)位置的E的高CD為____cm.17.如圖,起重機臂長,露在水面上的鋼纜長,起重機司機想看看被打撈的沉船情況,在豎直平面內(nèi)把起重機臂逆時針轉(zhuǎn)動到的位置,此時露在水面上的鋼纜的長度是___________.18.將邊長分別為,,的三個正方形按如圖所示的方式排列,則圖中陰影部分的面積為______.三、解答題(共78分)19.(8分)如圖1,拋物線與軸交于點,與軸交于點.(1)求拋物線的表達(dá)式;(2)點為拋物線的頂點,在軸上是否存在點,使?若存在,求出點的坐標(biāo);若不存在,說明理由;(3)如圖2,位于軸右側(cè)且垂直于軸的動直線沿軸正方向從運動到(不含點和點),分別與拋物線、直線以及軸交于點,過點作于點,求面積的最大值.20.(8分)某商店購進一批成本為每件30元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.(1)求該商品每天的銷售量y與銷售單價x之間的函數(shù)關(guān)系式;(2)若商店按單價不低于成本價,且不高于50元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤w(元)最大?最大利潤是多少?(3)若商店要使銷售該商品每天獲得的利潤不低于800元,則每天的銷售量最少應(yīng)為多少件?21.(8分)問題背景如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形.類比探究如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明.(2)△DEF是否為正三角形?請說明理由.(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請?zhí)剿鱝,b,c滿足的等量關(guān)系.22.(10分)已知:如圖,中,平分,是上一點,且.判斷與的數(shù)量關(guān)系并證明.23.(10分)如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的⊙O分別交AC、BC于點D、E,過點B作直線BF,交AC的延長線于點F.(1)求證:BE=CE;(2)若AB=6,求弧DE的長;(3)當(dāng)∠F的度數(shù)是多少時,BF與⊙O相切,證明你的結(jié)論.24.(10分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.25.(12分)下面是小東設(shè)計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.已知:如圖1,直線l及直線l外一點A.求作:直線AD,使得AD∥l.作法:如圖2,①在直線l上任取一點B,連接AB;②以點B為圓心,AB長為半徑畫弧,交直線l于點C;③分別以點A,C為圓心,AB長為半徑畫弧,兩弧交于點D(不與點B重合);④作直線AD.所以直線AD就是所求作的直線.根據(jù)小東設(shè)計的尺規(guī)作圖過程,完成下面的證明.(說明:括號里填推理的依據(jù))證明:連接CD.∵AD=CD=__________=__________,∴四邊形ABCD是().∴AD∥l().26..在一個不透明的布袋中裝有三個小球,小球上分別標(biāo)有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.(1)隨機地從布袋中摸出一個小球,則摸出的球為標(biāo)有數(shù)字2的小球的概率為;(2)小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的縱坐標(biāo),請用樹狀圖或表格列出點M所有可能的坐標(biāo),并求出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.
參考答案一、選擇題(每題4分,共48分)1、D【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】根據(jù)相同時刻的物高與影長成比例,設(shè)旗桿的高度為xm,根據(jù)題意得:,解得:x=8,即旗桿的高度為8m,故選:D.【點睛】本題主要考查了相似三角形的應(yīng)用,同一時刻物高和影長成正比,考查利用所學(xué)知識解決實際問題的能力.2、B【詳解】解:∵∠C=90°,∴AB2=AC2+BC2,而AC=9,BC=12,∴AB==1.又∵AB是Rt△ABC的外接圓的直徑,∴其外接圓的半徑為7.2.故選B.3、D【解析】A.種植10棵幼樹,結(jié)果可能是“有9棵幼樹成活”,故不正確;B.種植100棵幼樹,結(jié)果可能是“90棵幼樹成活”和“10棵幼樹不成活”,故不正確;C.種植10n棵幼樹,可能有“9n棵幼樹成活”,故不正確;D.種植10n棵幼樹,當(dāng)n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9,故正確;故選D.4、D【分析】根據(jù)二次函數(shù)的解析式,能得出二次函數(shù)的圖形開口向上,通過對稱軸公式得出二次函數(shù)的對稱軸為x=3,由此可知離對稱軸水平距離越遠(yuǎn),函數(shù)值越大即可求解.【詳解】解:∵二次函數(shù)中a>0∴拋物線開口向上,有最小值.∵∴離對稱軸水平距離越遠(yuǎn),函數(shù)值越大,∵由二次函數(shù)圖像的對稱性可知x=4對稱點x=2∴故選:D.【點睛】本題主要考查的是二次函數(shù)圖像上點的坐標(biāo)特點,解此題的關(guān)鍵是掌握二次函數(shù)圖像的性質(zhì).5、B【分析】根據(jù)題意可得x1<x2,且x1、x2同號,根據(jù)反比例函數(shù)的圖象與性質(zhì)可得y1>y2,即可求解.【詳解】反比例函數(shù)y=的圖象分布在第一、三象限,在每一象限y隨x的增大而減小,而x1<x2,且x1、x2同號,所以y1>y2,即y1﹣y2>0,故選:B.【點睛】本題考查反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.6、D【分析】首先根據(jù)圓周角定理得出扇形半徑以及圓周角度數(shù),進而利用銳角三角函數(shù)關(guān)系得出BC,AC的長,利用S△ABC﹣S扇形BOE=圖中陰影部分的面積求出即可【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵弧BE的長為π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=﹣=﹣.故選D.【點睛】此題主要考查了扇形的面積計算以及三角形面積求法等知識,根據(jù)已知得出△BOE和△ABE面積相等是解題關(guān)鍵.7、B【分析】設(shè)該班的人數(shù)有n人,除小明外,其他人的身高為x1,x2……xn-1,根據(jù)平均數(shù)的定義可知:算上小明后,平均身高仍為172cm,然后根據(jù)方差公式比較大小即可.【詳解】解:設(shè)該班的人數(shù)有n人,除小明外,其他人的身高為x1,x2……xn-1,根據(jù)平均數(shù)的定義可知:算上小明后,平均身高仍為172cm根據(jù)方差公式:∵∴即故選B.【點睛】此題考查的是比較方差的大小,掌握方差公式是解決此題的關(guān)鍵.8、C【分析】由旋轉(zhuǎn)的性質(zhì)可得AB=AD,∠BAD=α,由等腰三角形的性質(zhì)可求解.【詳解】∵將△ABC繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α,
∴AB=AD,∠BAD=α,
∴∠B=
故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.9、B【解析】根據(jù)圓心角與圓周角關(guān)系定理求出∠AOB的度數(shù),進而由角的和差求得結(jié)果.【詳解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故選:B.【點睛】本題是圓的一個計算題,主要考查了在同圓或等圓中,同弧或等弧所對的圓心角等于它所對的圓周角的2信倍.10、A【分析】根據(jù)圓周角定理和正切函數(shù)的定義,即可求解.【詳解】∵∠1與∠2是同弧所對的圓周角,∴∠1=∠2,∴tan∠1=tan∠2=,故選A.【點睛】本題主要考查圓周角定理和正切函數(shù)的定義,把∠1的正切值化為∠2的正切值,是解題的關(guān)鍵.11、D【分析】根據(jù)方程有兩個不相等的實數(shù)根,得到一元二次方程的二次項系數(shù)不為零、根的判別式的值大于零,從而列出關(guān)于的不等式組,求出不等式組的解集即可得到的取值范圍.【詳解】根據(jù)題意得:,且,解得:,且.故選:D.【點睛】本題考查了一元二次方程的定義以及根的判別式,能夠準(zhǔn)確得到關(guān)于的不等式組是解決問題的關(guān)鍵.12、C【分析】把代入方程求出的值,再解方程即可.【詳解】∵一元二次方程的一個根為∴解得∴原方程為解得故選C【點睛】本題考查一元二次方程的解,把方程的解代入方程即可求出參數(shù)的值.二、填空題(每題4分,共24分)13、【詳解】首先根據(jù)一元二次方程有實數(shù)解可得:4-4(a-2)≥0可得:a≤3,則符合條件的a有0,1,2,3四個;解分式方程可得:x=,∵x≠2,則a≠1,a≠2,綜上所述,則滿足條件的a為0和3,則P=.考點:(1)、概率;(2)、分式方程的解.14、.【解析】分析:根據(jù)“反比例函數(shù)的圖象所處象限與的關(guān)系”進行解答即可.詳解:∵反比例函數(shù)的圖象在第一、三象限內(nèi),∴,解得:.故答案為.點睛:熟記“反比例函數(shù)的圖象所處象限與的關(guān)系:(1)當(dāng)時,反比例函數(shù)的圖象在第一、三象限;(2)當(dāng)時,反比例函數(shù)的圖象在第二、四象限.”是正確解答本題的關(guān)鍵.15、【解析】試題分析:本題主要考查的就是比的基本性質(zhì).根據(jù)題意可得:=+=+1=+1=.16、1.1【分析】證明△OCD∽△OAB,然后利用相似比計算出CD即可.【詳解】解:OB=5m,OD=3m,AB=1cm,∵CD∥AB,∴△OCD∽△OAB,∴,即,∴CD=1.1,即對應(yīng)位置的E的高CD為1.1cm.故答案為1.1.【點睛】本題考查了相似三角形的應(yīng)用:常常構(gòu)造“A”型或“X”型相似圖,利用三角形相似的性質(zhì)求相應(yīng)線段的長.17、30m【解析】首先在Rt△ABC中,利用正弦值可推出∠CAB=45°,然后由轉(zhuǎn)動角度可得出∠C'AB'=60°,在Rt△C'AB'中利用60°的正弦即可求出B'C'.【詳解】再Rt△ABC中,∵∴∠CAB=45°起重機臂逆時針轉(zhuǎn)動到的位置后,∠C'AB'=∠CAB+15°=60°在Rt△C'AB'中,B'C'=m故答案為:30m.【點睛】本題考查了解直角三角形,熟練掌握直角三角形中的邊角關(guān)系是解題的關(guān)鍵.18、【分析】首先對圖中各點進行標(biāo)注,陰影部分的面積等于正方形BEFL的面積減去梯形BENK的面積,再利用相似三角形的性質(zhì)求出BK、EN的長從而求出梯形的面積即可得出答案.【詳解】解:如圖所示,∵四邊形MEGH為正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面積:∴陰影部分的面積:故答案為:.【點睛】本題主要考查的知識點是圖形面積的計算以及相似三角形判定及其性質(zhì),根據(jù)相似的性質(zhì)求出相應(yīng)的邊長是解答本題的關(guān)鍵.三、解答題(共78分)19、(1);(2)不存在,理由見解析;(3)最大值為.【分析】(1)利用待定系數(shù)法求出解析式;(2)設(shè)點N的坐標(biāo)為(0,m),過點M做MH⊥y軸于點H,證得△MHN∽△NOB,利用對應(yīng)邊成比例,得到,方程無實數(shù)解,所以假設(shè)錯誤,不存在;(3)△PQE∽△BOC,得,得到,當(dāng)PE最大時,最大,求得直線的解析式,設(shè)點P的坐標(biāo)為,則E,再求得PE的最大值,從而求得答案.【詳解】(1)把點A(-2,0)、B(8,0)、C(0,4)分別代入,得:,解得,則該拋物線的解析式為:;(2)不存在∵拋物線經(jīng)過A(-2,0)、B(8,0),∴拋物線的對稱軸為,將代入得:,∴拋物線的頂點坐標(biāo)為:,假設(shè)在軸上存在點,使∠MNB=90,設(shè)點N的坐標(biāo)為(0,m),過頂點M做MH⊥y軸于點H,∴∠MNH+∠ONB=90,∠MNH+∠HMN=90,∴∠HMN=∠ONB,∴△MHN∽△NOB,∴,∵B(8,0),N(0,m),,∴,∴,整理得:,∵,∴方程無實數(shù)解,所以假設(shè)錯誤,在軸上不存在點,使∠MNB=90;(3)∵PQ⊥BC,PF⊥OB,∴,∴EF∥OC,∴,∴△PQE∽△BOC,得,∵B(8,0)、C(0,4),∴,,,∴,∴,∴當(dāng)PE最大時,最大,設(shè)直線的解析式為,將B(8,0)、C(0,4)代入得,解得:,∴直線的解析式為,設(shè)點P的坐標(biāo)為,則點E的坐標(biāo)為,∴,∵,∴當(dāng)時,有最大值為4,∴最大值為.【點睛】本題是二次函數(shù)的綜合題型,其中涉及到的知識點有:待定系數(shù)法求二次函數(shù)、一次函數(shù)解析式,點坐標(biāo),相似三角形的判定與性質(zhì)和三角形的面積求法,特別注意利用數(shù)形結(jié)合思想的應(yīng)用.20、(1);(2)時,w最大;(3)時,每天的銷售量為20件.【分析】(1)將點(30,150)、(80,100)代入一次函數(shù)表達(dá)式,即可求解;(2)由題意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由題意得(x-30)(-2x+160)≥800,解不等式即可得到結(jié)論.【詳解】(1)設(shè)y與銷售單價x之間的函數(shù)關(guān)系式為:y=kx+b,將點(30,100)、(45,70)代入一次函數(shù)表達(dá)式得:,解得:,故函數(shù)的表達(dá)式為:y=-2x+160;(2)由題意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故當(dāng)x<55時,w隨x的增大而增大,而30≤x≤50,∴當(dāng)x=50時,w由最大值,此時,w=1200,故銷售單價定為50元時,該超市每天的利潤最大,最大利潤1200元;(3)由題意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的銷售量y=-2x+160≥20,∴每天的銷售量最少應(yīng)為20件.【點睛】此題主要考查了二次函數(shù)的應(yīng)用以及一元二次不等式的應(yīng)用、待定系數(shù)法求一次函數(shù)解析式等知識,正確利用銷量×每件的利潤=w得出函數(shù)關(guān)系式是解題關(guān)鍵.21、(1)見解析;(1)△DEF是正三角形;理由見解析;(3)c1=a1+ab+b1【解析】試題分析:(1)由正三角形的性質(zhì)得∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;、(1)由全等三角形的性質(zhì)得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結(jié)論;(3)作AG⊥BD于G,由正三角形的性質(zhì)得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出結(jié)論.試題解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如圖所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考點:1.全等三角形的判定與性質(zhì);1.勾股定理.22、,理由見解析.【分析】根據(jù)題意,先證明∽,則,得到,然后得到結(jié)論成立.【詳解】證明:;理由如下:如圖:∵平分,∴,∵,∴∽,∴,∴,∴.【點睛】本題考查了相似三角形的判定和性質(zhì),以及等角對等邊,解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì)進行解題.23、(1)證明見解析;(2)弧DE的長為π;(3)當(dāng)∠F的度數(shù)是36°時,BF與⊙O相切.理由見解析.【解析】(1)連接AE,求出AE⊥BC,根據(jù)等腰三角形性質(zhì)求出即可;(2)根據(jù)圓周角定理求出∠DOE的度數(shù),再根據(jù)弧長公式進行計算即可;(3)當(dāng)∠F的度數(shù)是36°時,可以得到∠ABF=90°,由此即可得BF與⊙O相切.【詳解】(1)連接AE,如圖,∵AB為⊙O的直徑,∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年電機維修配件供應(yīng)合同3篇
- 2024年不銹鋼扶手跨界合作合同3篇
- 新學(xué)期學(xué)習(xí)計劃范文合集10篇
- 退費協(xié)議書合同范本
- 電視劇拍攝合同范本
- 空調(diào)設(shè)備招標(biāo)合同樣本
- 解除勞務(wù)分包合同范本
- 機械設(shè)備維修服務(wù)吊裝合同
- 酒店食材采購合同書
- 軟件合同保密協(xié)議的適用性問題探討
- 美容門診感染管理制度
- 2023年電商高級經(jīng)理年度總結(jié)及下一年計劃
- 模具開發(fā)FMEA失效模式分析
- 年產(chǎn)40萬噸灰底涂布白板紙造紙車間備料及涂布工段初步設(shè)計
- 1-3-二氯丙烯安全技術(shù)說明書MSDS
- 學(xué)生思想政治工作工作證明材料
- 一方出資一方出力合作協(xié)議
- 污水處理藥劑采購?fù)稑?biāo)方案(技術(shù)方案)
- 環(huán)保設(shè)施安全風(fēng)險評估報告
- 數(shù)字邏輯與計算機組成 習(xí)題答案 袁春風(fēng) 第3章作業(yè)批改總結(jié)
- 要求降低物業(yè)費的申請書范本
評論
0/150
提交評論