![2023屆贛州市重點高三壓軸卷數學試卷含解析_第1頁](http://file4.renrendoc.com/view/bde509aa2e48451c14eb849b38642557/bde509aa2e48451c14eb849b386425571.gif)
![2023屆贛州市重點高三壓軸卷數學試卷含解析_第2頁](http://file4.renrendoc.com/view/bde509aa2e48451c14eb849b38642557/bde509aa2e48451c14eb849b386425572.gif)
![2023屆贛州市重點高三壓軸卷數學試卷含解析_第3頁](http://file4.renrendoc.com/view/bde509aa2e48451c14eb849b38642557/bde509aa2e48451c14eb849b386425573.gif)
![2023屆贛州市重點高三壓軸卷數學試卷含解析_第4頁](http://file4.renrendoc.com/view/bde509aa2e48451c14eb849b38642557/bde509aa2e48451c14eb849b386425574.gif)
![2023屆贛州市重點高三壓軸卷數學試卷含解析_第5頁](http://file4.renrendoc.com/view/bde509aa2e48451c14eb849b38642557/bde509aa2e48451c14eb849b386425575.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若關于的方程恰好有3個不相等的實數根,則實數的取值范圍為()A. B. C. D.2.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”3.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.4.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立5.已知函數的零點為m,若存在實數n使且,則實數a的取值范圍是()A. B. C. D.6.復數的模為().A. B.1 C.2 D.7.函數且的圖象是()A. B.C. D.8.函數的大致圖象是()A. B.C. D.9.設集合,,若,則的取值范圍是()A. B. C. D.10.已知數列的通項公式為,將這個數列中的項擺放成如圖所示的數陣.記為數陣從左至右的列,從上到下的行共個數的和,則數列的前2020項和為()A. B. C. D.11.已知,,,,.若實數,滿足不等式組,則目標函數()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值12.為虛數單位,則的虛部為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若的展開式中各項系數之和為32,則展開式中x的系數為_____14.棱長為的正四面體與正三棱錐的底面重合,若由它們構成的多面體的頂點均在一球的球面上,則正三棱錐的內切球半徑為______.15.若向量滿足,則實數的取值范圍是____________.16.在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數a的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.18.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風雨歷程,某地的民調機構隨機選取了該地的100名市民進行調查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現從年齡在,,內的人員中按分層抽樣的方法抽取8人,再從這8人中隨機選取3人進行座談,用表示年齡在)內的人數,求的分布列和數學期望;(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調查,其中有名市民的年齡在的概率為.當最大時,求的值.19.(12分)改革開放40年,我國經濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯表,并判斷有多大把握認為交通安全意識與性別有關;(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82820.(12分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.21.(12分)已知等差數列{an}的前n項和為Sn,且(1)求數列{a(2)求數列{1Sn}的前22.(10分)已知數列,其前項和為,滿足,,其中,,,.⑴若,,(),求證:數列是等比數列;⑵若數列是等比數列,求,的值;⑶若,且,求證:數列是等差數列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
討論,,三種情況,求導得到單調區(qū)間,畫出函數圖像,根據圖像得到答案.【詳解】當時,,故,函數在上單調遞增,在上單調遞減,且;當時,;當時,,,函數單調遞減;如圖所示畫出函數圖像,則,故.故選:.【點睛】本題考查了利用導數求函數的零點問題,意在考查學生的計算能力和應用能力.2.B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.3.C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).4.D【解析】
取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.5.D【解析】
易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區(qū)間上有解,化簡可得,借助對號函數即可解得實數a的取值范圍.【詳解】易知函數單調遞增且有惟一的零點為,所以,∴,問題轉化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據“對勾函數”可知函數在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數的零點問題,考查了方程有解問題,分離參數法及構造函數法的應用,考查了利用“對勾函數”求參數取值范圍問題,難度較難.6.D【解析】
利用復數代數形式的乘除運算化簡,再由復數模的計算公式求解.【詳解】解:,復數的模為.故選:D.【點睛】本題主要考查復數代數形式的乘除運算,考查復數模的求法,屬于基礎題.7.B【解析】
先判斷函數的奇偶性,再取特殊值,利用零點存在性定理判斷函數零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數,關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數圖象的判斷,考查了函數的性質,屬于中檔題.8.A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數圖象,屬基礎題.9.C【解析】
由得出,利用集合的包含關系可得出實數的取值范圍.【詳解】,且,,.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關系求參數,考查計算能力,屬于基礎題.10.D【解析】
由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設每一行的和為故因此:故故選:D【點睛】本題考查了等差數列型數陣的求和,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.11.B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數一定有最大值和最小值.故選:B【點睛】本題考查了目標函數最值是否存在問題,考查了數形結合思想,考查了不等式的性質應用.12.C【解析】
利用復數的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數的運算以及復數的概念,注意復數的虛部為,不是,本題為基礎題,也是易錯題.二、填空題:本題共4小題,每小題5分,共20分。13.2025【解析】
利用賦值法,結合展開式中各項系數之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數.【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數之和,考查二項式展開式指定項系數的求法,屬于基礎題.14.【解析】
由棱長為的正四面體求出外接球的半徑,進而求出正三棱錐的高及側棱長,可得正三棱錐的三條側棱兩兩相互垂直,進而求出體積與表面積,設內切圓的半徑,由等體積,求出內切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設三角形的外接圓的半徑為,則,解得,設外接球的半徑為,則可得,即,解得,設正三棱錐的高為,因為,所以,所以,而,所以正三棱錐的三條側棱兩兩相互垂直,所以,設內切球的半徑為,,即解得:.故答案為:.【點睛】本題考查多面體與球的內切和外接問題,考查轉化與化歸思想,考查空間想象能力、運算求解能力,求解時注意借助幾何體的直觀圖進行分析.15.【解析】
根據題意計算,解得答案.【詳解】,故,解得.故答案為:.【點睛】本題考查了向量的數量積,意在考查學生的計算能力.16.3【解析】
設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0),聯立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【詳解】設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(0,1),∴B的坐標為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當且僅當,即t時,△ABC的面積S有最大值為.解之得a=3或a.∵a時,t2不符合題意,∴a=3.故答案為:3.【點睛】本題考查了橢圓內三角形面積的最值問題,意在考查學生的計算能力和轉化能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)的極坐標方程為,的直角坐標方程為(2)【解析】
(1)先把曲線的參數方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數形結合思想,屬于中檔題.18.(1)分布列見解析,(1)【解析】
(1)根據頻率分布直方圖及抽取總人數,結合各組頻率值即可求得各組抽取的人數;的可能取值為0,1,1,由離散型隨機變量概率求法即可求得各概率值,即可得分布列;由數學期望公式即可求得其數學期望.(1)先求得年齡在內的頻率,視為概率.結合二項分布的性質,表示出,令,化簡后可證明其單調性及取得最大值時的值.【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數為人,年齡在內的人數為人.年齡在內的人數為人.所以的可能取值為0,1,1.所以,,,所以的分市列為011.(1)設在抽取的10名市民中,年齡在內的人數為,服從二項分布.由頻率分布直方圖可知,年齡在內的頻率為,所以,所以.設,若,則,;若,則,.所以當時,最大,即當最大時,.【點睛】本題考差了離散型隨機變量分布列及數學期望的求法,二項分布的綜合應用,屬于中檔題.19.(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(Ⅲ)見解析,【解析】
(Ⅰ)直接根據頻率和為1計算得到答案.(Ⅱ)完善列聯表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數學期望得到答案.【詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識強的概率.(Ⅱ)安全意識強安全意識不強合計男性163450女性44650合計2080100,所以有的把握認為交通安全意識與性別有關(Ⅲ)的取值為所以的分布列為期望.【點睛】本題考查了獨立性檢驗,分布列,數學期望,意在考查學生的計算能力和綜合應用能力.20.(1)曲線的直角坐標方程為;直線的直角坐標方程為(2)【解析】
(1)由公式可化極坐標方程為直角坐標方程,消參法可化參數方程為普通方程;(2)聯立兩曲線方程,解方程組得兩交點坐標,從而得兩點間距離.【詳解】解:(1)曲線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年裝卸機械項目立項申請報告模式
- 2025年上海高級商場物業(yè)管理續(xù)簽合同協議
- 2025年膠片型相機、CCD相機、紅外相機、恒星相機項目規(guī)劃申請報告模板
- 2025年勞動合同法續(xù)約條件規(guī)定
- 優(yōu)化農業(yè)產業(yè)供應鏈的合同范例2025年
- 2025年設備租賃展示合同范本
- 2025年公共交通廣告安裝服務協議
- 2025年上海技術顧問合同
- 2025年建筑項目材料采購申請及供銷協議
- 2025年二手房產交易定金給付合同協議樣本
- 《醫(yī)療廢物等離子體集中處理處置工程技術規(guī)范(報批稿)》編制說明
- 小學語文六年級上閱讀總24篇(附答案)
- 視頻監(jiān)控系統工程施工組織設計方案
- 食堂食材配送采購 投標方案(技術方案)
- 人教版新課標小學美術二年級下冊全冊教案
- 全國助殘日關注殘疾人主題班會課件
- 工會工作制度匯編
- 液壓動力元件-柱塞泵課件講解
- 2022年版 義務教育《數學》課程標準
- 食管早癌的內鏡診斷
- 人體解剖學題庫(含答案)
評論
0/150
提交評論