講高數(shù)17堂專題課多元函數(shù)極值與最值_第1頁
講高數(shù)17堂專題課多元函數(shù)極值與最值_第2頁
講高數(shù)17堂專題課多元函數(shù)極值與最值_第3頁
講高數(shù)17堂專題課多元函數(shù)極值與最值_第4頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

定義zf(xyP(x0y0的某鄰域內(nèi)有定義,若對(duì)該鄰域內(nèi)任意的點(diǎn)P(x,y)均有f(xy)f(x0y0)(f(xyf(x0,y0則稱(x0y0f(xy的極大值點(diǎn)(或極小值點(diǎn)f(x0y0f(xy的極大極值1(極值的必要條件)設(shè)zf(xy在點(diǎn)(x0y0存在偏導(dǎo)數(shù),且(x0y0f(xyfx(x0,y0) fy(x0,y0)2(極值的充分條件)zf(xyP0x0y0的某鄰域內(nèi)有二階連續(xù)偏導(dǎo)fx(x0y0fy(x0y00。記Afxx(x0,y0 Bfxy(x0,y0 Cfyy(x0,y0ACB20,則(x0y0f(xyA0,則(x0y0f(xyA0,則(x0y0f(xyACB20,則(x0y0f(xyACB20,則(x0y0f(xyf(xy)的zf(xyf(xyP1,LPk【注】二元函數(shù)zf(xy)(x2f(xx2zf(xy在條件(xy)0(1)構(gòu)造日函數(shù)F(x,y,)f(x,y)(x, f(x, (x, x,yx,y及,則其中(x,y就是函數(shù)f(xy)在條件(x,y)0下的可能的極值點(diǎn).nm個(gè)約束條件下的極值問題,如求uf(xyz在條件(x,y,z)0,(x,y,z)0下的極值,可構(gòu)造日函F(x,y,z,,)f fx(x,y,z)(x,y,z)(x,y,z) f(x,y,z)(x,y,z)(x,y,z) fz(x,y,z)z(x,y,z)z(x,y,z)(x,y,z)xyz及,則其中(xyz(1)f(xyD(2)f(x,yD(3)【1zxy(3xy的極值點(diǎn)是((A) (B) zxy(32xy)zz

x(32yx)(0,00,3),(3,0),(1,1都滿足上式zxx2y,zyy2x,zxy32x2y.在(0,0)點(diǎn) ACB290,無極值;在(0,3)點(diǎn) ACB290,無極值;在(3,0) ACB290,無極值在(1,1)點(diǎn) ACB230,有極值.【2f(xg(xf(0)0g(0)0fg(0)0zf(x)gy在點(diǎn)(0,0)處取得極小值的一個(gè)充分條件是((A)f(0)0,g(0) (B)f(0)0,g(0)(C)f(0)0,g(0) (D)f(0)0,g(0)zf(x)g(y),z

f(x)g(y)

f(x)g(y) . .2z f(x)g(

zf(x)g(

,在(0,0)處ACB2f(0)g(0)f(0)g(0)[ff(0)g(0)ff(0)0g(00f(00g(0)0f(0)g(0)f(0)g(0)0,Af(0)g(0)0.zf(x)gy在點(diǎn)(0,0)處取得極小值.故選(A).3zf(xy的全微分dzayx2dxaxy2dya0f(x, (B)點(diǎn)(a,a)為極小值點(diǎn)(C)點(diǎn)(a,a)為極大值點(diǎn) (D)是否有極值點(diǎn)與a的取值有關(guān)【解】由dzayx2dxaxy2dyzayx2,zax ayx2令axy2

xayACB23a20,A2a則點(diǎn)(a,a)為極大值點(diǎn)f(x,y)(x2f(x,y)(x2y2 x2

a(A)點(diǎn)(0,0)不是f(x,y)的極值 (B)點(diǎn)(0,0)是f(x,y)的極大點(diǎn)點(diǎn)(0,0)f(xy根據(jù)所給條件無法判斷點(diǎn)(0,0)f(xy【解】由

ax2f(x,y)(x2y2 x2,fx2f(x,y)(x2y2 x2,

f(0,0)其中l(wèi)im(x,y)x2x2 f(x,y) (x, x2x2x2 x2f(x,y)a()當(dāng)a0f(xy在(0,0當(dāng)a0f(xy在(0,0當(dāng)a0f(xy在(0,0x2f(x,y)(2x (x2x2f(0,0)0,f(x,0)2xxx0f(x,00;x0f(x,0)0;則點(diǎn)(0,0f(xy的極值點(diǎn).【5f(xy與(xy均為可微函數(shù),且y(xy0已知(x0y0f(xy在約束條件(x,y)0下的一個(gè)極值點(diǎn),下列選項(xiàng)正確的是().(A)若fx(x0,y0)0,則fy(x0,y0) (B)若fx(x0,y0)0,則fy(x0,y0)(C)若fx(x0y00fy(x0y00(D)fx(x0y00fy(x0y0【解】構(gòu)造日函數(shù)F(x,y,)f(x,y)(x,y),F(xiàn)x(x,yFy(x,y)0得fx(x0,y0)x(x0,y0)fy(x0,y0)y(x0,y0)

fx(x0y00(1)式知0又y(xy0此時(shí)由(2)式可知fy(x0y00故應(yīng)選6】f(xyx22y2ylny的極值 f(x,y)2x(2y2),f(x,y)2x2ylny fx(x,y) 1 令f(xy0解得唯一駐點(diǎn)0,e yAf0,12(2y2 221xx e

1 2 eBf0,14xyxy

1 e

0,eCf0,1 2x 1

yy

0,1 eACB22e210A0.f0,1f(xy f0,11

e2

e e 【7f(xyfxy2(y1)ex,fx(x,0)(x1)ex,f(0,y)y22f(xyfx(x,0)x1)ex所以ex(x)x得(xxexfxy1)2ex對(duì)x積分 f(x,y)(y1)2ex(x1)ex(f(0,y)y22y所以y0f(x,y)(xy22f2y2)ex,fxy22y2)ex,f fx0,fy0,得駐點(diǎn)(0,1所ACB20,A0,f(0,1) 0 0,

C,xy 2u由題設(shè)xy0, y20,可知,B0,AC0,ACB2故函數(shù)u(xy)D內(nèi)無極值點(diǎn),因此,u(x,y)D的邊界上取2】zf(xy的全微分dz2xdx2ydyf(1,1)2.f(xy D(xy

1上的最大值和最小值 【解1】由dz2xdx2ydy可 zf(x,y)x2y2再由f(1,1)2,得C2, zf(x,y)x2y2 x2x0,y2y0解得駐點(diǎn)(0,0)x2y24

1z

(4

z5x2 (1xx x其最大值為 3最小值為 2.再與f(0,0)2比較可知f(x,yx x 日乘數(shù)法求此函數(shù)在橢圓x2y2Lx2y22

1上的極值4 L

2y

yLx2y1 解得4個(gè)可能的極值點(diǎn)(0,2),(0,2),(1,0)和(1,0)又f(0,22,f(0,2)2,f(1,0)3,f(1,03,再與f(0,0)2比較,得f(xyD3,最小值為23】同解法一,得駐點(diǎn)(0,0).x2y24

cost,

2sin zf(x,y)x2y22cos2t4sin2t35sin2fmax3,fmin3zz(x,y的微分dz2x12y)dx12x4y)dyz(0,00,求zz(x,y)4x2y225上的最大值。由dz2x12y)dx12x4y)dyzx212xy2zx2x12yz令 12x4yzyF(x,y,)x212xy2y2(4x2y2Fx2x12y8xF4x2y225(14)x6y

6x(2)y

1則6

62

0,解得12,24 24

,4),P4

,4),z 比較得zmax4】求函數(shù)ux2y2z2zx2y2xyz4下的最大值與最小【解】作日函F(x,y,z,,)x2y2z2(x2y2z)(xyzFx2x2xF2y2y Fz2z Fx2 解方程組,得最小值為6.5】x3xyy31x0y0)x2x2L(x,y,)x2y2(x3xyy3 L2x(3x2y) L2y(3y2x) Lx3xyy31 3x2x0y0y3y2x即3xyyxxy)(xyyx或3xy(xyx0,y0yx代入③得2x3x210,即(2x2x1)(x1)0x22x22x2當(dāng)x0,y1或x1,y0時(shí)x22 2【6】將長(zhǎng)為2m的鐵絲分成三段,以次圍成圓、正方形與正三角形.三個(gè)圖形的面積之S(x,y,z)x2y234 2x4y3z (x0,y0,z L(x,y,z,)x2y2

z2(2x4y3z343 L2x2 2y4 L 3z3 L2x4y3z2 2解 x0433,y041 S(x,y,z) .1 43

,z0 434343又當(dāng)2x4y3z2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論