版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Ramberg-OsgoodrelationshipFromWikipedia,thefreeencyclopediaJumpto:navigation,searchTheRamberg-Osgoodequationwascreatedtodescribethenonlinearrelationshipbetweenstressandstrain—thatis,thestress-straincurve—inmaterialsneartheiryieldpoints.Itisespeciallyusefulformetalsthathardenwithplasticdeformation(seestrainhardening),showingasmoothelastic-plastictransition.Initsoriginalform,itsays£isstrain,gisstress,EisYoung'smodulusandKandnareconstantsthatdependonthematerialbeingconsidered.Thefirsttermontherightside,"'-,isequaltotheelasticpartofthestrain,whilethesecondterm, ,accountsfortheplasticpart,theparametersKandndescribingthehardeningbehaviorofthematerial.Introducingtheyieldstrengthofthematerial,aanddefininganewparameter,a,relatedtoKas'1=Kg/E)",itisconvenienttorewritethetermontheextremerightsideasfollows:Replacinginthefirstexpression,theRamberg-Osgoodequationcanbewrittenas
[edit]HardeningbehaviorandYieldoffsetInthelastformoftheRamberg-Osgoodmodel,thehardeningbehaviorofthematerialdependsonthematerialconstantsand.■?.Duetothepower-lawrelationshipbetweenstressandplasticstrain,theRamberg-Osgoodmodelimpliesthatplasticstrainispresentevenforverylowlevelsofstress.Nevertheless,forlowappliedstressesandforthecommonlyusedvaluesofthematerialconstantsaandn,theplasticstrainremainsnegligiblecomparedtotheelasticstrain.Ontheotherhand,forstresslevelshigherthanaplasticstrainbecomesprogressivelylargerthanelasticstrain.d— .ThevalueEcanbeseenasayieldoffsetasshowninfigure1.Thiscomesfromthefactthat1 1■-'ri",when門門...Accordingly(seeFigure1):elasticstrainatyield=plasticstrainatyield=plasticstrainatyield=W「=yieldoffsetCommonlyusedvaluesforare~5orgreater,althoughmoreprecisevaluesareusuallyobtainedbyfittingoftensile(orcompressive)experimentaldata.Valuesfonicanalsobefoundbymeansoffittingtoexperimentaldata,althoughforsomematerials,itcanbefixedinordertohavetheyieldoffsetequaltotheacceptedvalueofstrainof0.2%,whichmeans:□罕=0?002
Figure1:GenericrepresentationoftheStress-StraincurvebymeansoftheRamberg-Osgoodequation.Straincorrespondingtotheyieldpointisthesumoftheelasticandplasticcomponents.[edit]Sources仁Ramberg,W.,&Osgood,W.R.(1943).Descriptionofstress-straincurvesbythreeparameters.TechnicalNoteNo.,9NationalAdvisoryCommitteeForAeronautics,WashingtonDC,[1]11.2.13DeformationplasticityProducts:ABAQUS/StandardABAQUS/CAEReferences.“Materiallibrary:overview,”Section9.1.1.“Inelasticbehavior,”Section11.1.1?^DEFORMATIONPLASTICITYOverviewThedeformationtheoryRamberg-Osgoodplasticitymodel:isprimarilyintendedforuseindevelopingfullyplasticsolutionsforfracturemechanicsapplicationsinductilemetals;andcannotappearwithanyothermechanicalresponsematerialmodelssinceitcompletelydescribesthemechanicalresponseofthematerial.One-dimensionalmodelInonedimensionthemodeliswherecristhestress;isthestrain;EisYoung'smodulus(definedastheslopeofthestress-straincurveatzerostress);qisthe“yield”offset;istheyieldstress,inthesensethat,when-—,",I,「? ■';andisthehardeningexponentforthe“plastic”(nonlinear)term:,IThematerialbehaviordescribedbythismodelisnonlinearatallstresslevels,butforcommonlyusedvaluesofthehardeningexponent(.?. ormore)thenonlinearitybecomessignificantonlyatstressmagnitudesapproachingorexceeding.GeneralizationtomultiaxialstressstatesTheone-dimensionalmodelisgeneralizedtomultiaxialstressstatesusingHooke'slawforthelineartermandtheMisesstresspotentialandassociatedflowlawforthenonlinearterm:whereisthestraintensor,isthestresstensor,istheequivalenthydrostaticstress,istheMisesequivalentstress,isthestressdeviator,andisthePoissonsratio.Thelinearpartofthebehaviorcanbecompressibleorincompressible,dependingonthevalueofthePoisson'sratio,butthenonlinearpartofthebehaviorisincompressible(becausetheflowisnormaltotheMisesstresspotential).Themodelisdescribedindetailin“Deformationplasticity,”Section4.3.9oftheABAQUSTheoryManua..Youspecifytheparameters,?,一n,and「directly.Theycanbedefinedasatabularfunctionoftemperature.InputFileUsage: *DEFORMATIONPLASTICITYABAQUS/CAEUsage:Propertymodule:materialeditor:Mechanical—:,DeformationPlasticityTypicalapplicationsThedeformationplasticitymodelismostcommonlyappliedinstaticloadingwithsmall-displacementanalysis,wherethefullyplasticsolutionmustbedevelopedinapartofthemodel.Generally,theloadisrampedonuntilallpointsintheregionbeingmonitoredsatisfytheconditionthatthe“plasticstrain”dominatesand,hence,exhibitfullyplasticbehavior,whichisdefinedasorYoucanspecifythenameofaparticularelementsettobemonitoredinastaticanalysisstepforfullyplasticbehavior.Thestepwillendwhenthesolutionsatallconstitutivecalculationpointsintheelementsetarefullyplastic,whenthemaximumnumberofincrementsspecifiedforthestepisreached,orwhenthetimeperiodspecifiedforthestaticstepisexceeded,whichevercomesfirst.InputFileUsage: *STATIC,FULLYPLASTIC=ElsetNameABAQUS/CAEUsage:Stepmodule:CreateStep:General:Static,General:Other:Stopwhenregionregionisfullyplastic.ElementsDeformationplasticitycanbeusedwithanystress/displacementelementinABAQUS/Standard.Sinceitwillgenerallybeusedforcaseswhenthedeformationisdominatedbyplasticflow,theuseof“hybrid”(mixedformulation)orreduced-integrationelementsisrecommendedwitht
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024店鋪轉(zhuǎn)讓合同范例
- 2024年采購合同變更協(xié)議
- 審計業(yè)務(wù)約定書模板
- 私人購房合同模板
- 深圳市房地產(chǎn)出租合同書
- 專業(yè)保證擔保合同大全
- 電視廣告代理權(quán)協(xié)議
- 住宅拆遷協(xié)議書
- 會計師會議協(xié)議書
- 2024版自愿離婚協(xié)議書寫作要點
- 電力公司臨時用工安全管理辦法(標準版)
- 山東省濟南市歷下區(qū)2023-2024學年五年級上學期月考英語試卷(12月份)
- 江蘇省高速公路設(shè)計優(yōu)化指導意見
- 2024人教版道德與法治三年級上冊第四單元:家是最溫暖的地方大單元整體教學設(shè)計
- 房子兩年后過戶協(xié)議書模板
- 畢業(yè)研究生登記表(適用于江蘇省)
- 北師大版小學數(shù)學二年級上冊期中試卷含參考答案
- 1.1地球的自轉(zhuǎn)和公轉(zhuǎn)(第一課時)
- 云南省2023年秋季學期期末普通高中學業(yè)水平考試信息技術(shù)(含答案解析)
- 1.1《堅持改革開放》課件3
- 2024年全國中級會計職稱之中級會計財務(wù)管理考試歷年考試題詳細參考解析
評論
0/150
提交評論