ABAQUS應(yīng)變塑性模型_第1頁
ABAQUS應(yīng)變塑性模型_第2頁
ABAQUS應(yīng)變塑性模型_第3頁
ABAQUS應(yīng)變塑性模型_第4頁
ABAQUS應(yīng)變塑性模型_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Ramberg-OsgoodrelationshipFromWikipedia,thefreeencyclopediaJumpto:navigation,searchTheRamberg-Osgoodequationwascreatedtodescribethenonlinearrelationshipbetweenstressandstrain—thatis,thestress-straincurve—inmaterialsneartheiryieldpoints.Itisespeciallyusefulformetalsthathardenwithplasticdeformation(seestrainhardening),showingasmoothelastic-plastictransition.Initsoriginalform,itsays£isstrain,gisstress,EisYoung'smodulusandKandnareconstantsthatdependonthematerialbeingconsidered.Thefirsttermontherightside,"'-,isequaltotheelasticpartofthestrain,whilethesecondterm, ,accountsfortheplasticpart,theparametersKandndescribingthehardeningbehaviorofthematerial.Introducingtheyieldstrengthofthematerial,aanddefininganewparameter,a,relatedtoKas'1=Kg/E)",itisconvenienttorewritethetermontheextremerightsideasfollows:Replacinginthefirstexpression,theRamberg-Osgoodequationcanbewrittenas

[edit]HardeningbehaviorandYieldoffsetInthelastformoftheRamberg-Osgoodmodel,thehardeningbehaviorofthematerialdependsonthematerialconstantsand.■?.Duetothepower-lawrelationshipbetweenstressandplasticstrain,theRamberg-Osgoodmodelimpliesthatplasticstrainispresentevenforverylowlevelsofstress.Nevertheless,forlowappliedstressesandforthecommonlyusedvaluesofthematerialconstantsaandn,theplasticstrainremainsnegligiblecomparedtotheelasticstrain.Ontheotherhand,forstresslevelshigherthanaplasticstrainbecomesprogressivelylargerthanelasticstrain.d— .ThevalueEcanbeseenasayieldoffsetasshowninfigure1.Thiscomesfromthefactthat1 1■-'ri",when門門...Accordingly(seeFigure1):elasticstrainatyield=plasticstrainatyield=plasticstrainatyield=W「=yieldoffsetCommonlyusedvaluesforare~5orgreater,althoughmoreprecisevaluesareusuallyobtainedbyfittingoftensile(orcompressive)experimentaldata.Valuesfonicanalsobefoundbymeansoffittingtoexperimentaldata,althoughforsomematerials,itcanbefixedinordertohavetheyieldoffsetequaltotheacceptedvalueofstrainof0.2%,whichmeans:□罕=0?002

Figure1:GenericrepresentationoftheStress-StraincurvebymeansoftheRamberg-Osgoodequation.Straincorrespondingtotheyieldpointisthesumoftheelasticandplasticcomponents.[edit]Sources仁Ramberg,W.,&Osgood,W.R.(1943).Descriptionofstress-straincurvesbythreeparameters.TechnicalNoteNo.,9NationalAdvisoryCommitteeForAeronautics,WashingtonDC,[1]11.2.13DeformationplasticityProducts:ABAQUS/StandardABAQUS/CAEReferences.“Materiallibrary:overview,”Section9.1.1.“Inelasticbehavior,”Section11.1.1?^DEFORMATIONPLASTICITYOverviewThedeformationtheoryRamberg-Osgoodplasticitymodel:isprimarilyintendedforuseindevelopingfullyplasticsolutionsforfracturemechanicsapplicationsinductilemetals;andcannotappearwithanyothermechanicalresponsematerialmodelssinceitcompletelydescribesthemechanicalresponseofthematerial.One-dimensionalmodelInonedimensionthemodeliswherecristhestress;isthestrain;EisYoung'smodulus(definedastheslopeofthestress-straincurveatzerostress);qisthe“yield”offset;istheyieldstress,inthesensethat,when-—,",I,「? ■';andisthehardeningexponentforthe“plastic”(nonlinear)term:,IThematerialbehaviordescribedbythismodelisnonlinearatallstresslevels,butforcommonlyusedvaluesofthehardeningexponent(.?. ormore)thenonlinearitybecomessignificantonlyatstressmagnitudesapproachingorexceeding.GeneralizationtomultiaxialstressstatesTheone-dimensionalmodelisgeneralizedtomultiaxialstressstatesusingHooke'slawforthelineartermandtheMisesstresspotentialandassociatedflowlawforthenonlinearterm:whereisthestraintensor,isthestresstensor,istheequivalenthydrostaticstress,istheMisesequivalentstress,isthestressdeviator,andisthePoissonsratio.Thelinearpartofthebehaviorcanbecompressibleorincompressible,dependingonthevalueofthePoisson'sratio,butthenonlinearpartofthebehaviorisincompressible(becausetheflowisnormaltotheMisesstresspotential).Themodelisdescribedindetailin“Deformationplasticity,”Section4.3.9oftheABAQUSTheoryManua..Youspecifytheparameters,?,一n,and「directly.Theycanbedefinedasatabularfunctionoftemperature.InputFileUsage: *DEFORMATIONPLASTICITYABAQUS/CAEUsage:Propertymodule:materialeditor:Mechanical—:,DeformationPlasticityTypicalapplicationsThedeformationplasticitymodelismostcommonlyappliedinstaticloadingwithsmall-displacementanalysis,wherethefullyplasticsolutionmustbedevelopedinapartofthemodel.Generally,theloadisrampedonuntilallpointsintheregionbeingmonitoredsatisfytheconditionthatthe“plasticstrain”dominatesand,hence,exhibitfullyplasticbehavior,whichisdefinedasorYoucanspecifythenameofaparticularelementsettobemonitoredinastaticanalysisstepforfullyplasticbehavior.Thestepwillendwhenthesolutionsatallconstitutivecalculationpointsintheelementsetarefullyplastic,whenthemaximumnumberofincrementsspecifiedforthestepisreached,orwhenthetimeperiodspecifiedforthestaticstepisexceeded,whichevercomesfirst.InputFileUsage: *STATIC,FULLYPLASTIC=ElsetNameABAQUS/CAEUsage:Stepmodule:CreateStep:General:Static,General:Other:Stopwhenregionregionisfullyplastic.ElementsDeformationplasticitycanbeusedwithanystress/displacementelementinABAQUS/Standard.Sinceitwillgenerallybeusedforcaseswhenthedeformationisdominatedbyplasticflow,theuseof“hybrid”(mixedformulation)orreduced-integrationelementsisrecommendedwitht

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論