版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年甘肅省天水市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,α=30。,則各桿強(qiáng)度計算有誤的一項為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
3.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
4.
()A.x2
B.2x2
C.xD.2x
5.
6.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
7.輥軸支座(又稱滾動支座)屬于()。
A.柔索約束B.光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束
8.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
9.設(shè)函數(shù)f(x)在點x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
10.
11.下列關(guān)系正確的是()。A.
B.
C.
D.
12.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
13.設(shè)二元函數(shù)z==()A.1
B.2
C.x2+y2
D.
14.
15.
16.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
17.則f(x)間斷點是x=()。A.2B.1C.0D.-1
18.
19.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
20.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
二、填空題(20題)21.設(shè)z=x2y+siny,=________。
22.
23.
24.
25.
26.微分方程y'+9y=0的通解為______.
27.
28.
29.設(shè)z=xy,則dz=______.
30.設(shè)y=ex/x,則dy=________。
31.
32.
33.
34.
35.
36.
37.
38.級數(shù)的收斂區(qū)間為______.
39.
40.
三、計算題(20題)41.
42.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
43.
44.
45.
46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
47.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
48.求曲線在點(1,3)處的切線方程.
49.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
50.
51.將f(x)=e-2X展開為x的冪級數(shù).
52.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
53.求微分方程y"-4y'+4y=e-2x的通解.
54.
55.
56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
57.證明:
58.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
59.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
60.求微分方程的通解.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)
六、解答題(0題)72.在曲線y=x2(x≥0)上某點A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點A的坐標(biāo)((a,a2).(2)過切點A的切線方程.
參考答案
1.B
2.C
3.A
4.A
5.D
6.A本題考查的知識點為偏導(dǎo)數(shù)的計算。由于故知應(yīng)選A。
7.C
8.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
9.D本題考查的知識點為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。
10.B
11.C本題考查的知識點為不定積分的性質(zhì)。
12.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
13.A
14.C
15.B
16.A本題考查的知識點為級數(shù)的絕對收斂與條件收斂。
由于的p級數(shù),可知為收斂級數(shù)。
可知收斂,所給級數(shù)絕對收斂,故應(yīng)選A。
17.Df(x)為分式,當(dāng)X=-l時,分母x+1=0,分式?jīng)]有意義,因此點x=-1為f(x)的間斷點,故選D。
18.B
19.A
20.C本題考查了二次曲面的知識點。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
21.由于z=x2y+siny,可知。
22.-4cos2x
23.(12)
24.0.
本題考查的知識點為定積分的性質(zhì).
積分區(qū)間為對稱區(qū)間,被積函數(shù)為奇函數(shù),因此
25.1.
本題考查的知識點為二元函數(shù)的極值.
可知點(0,0)為z的極小值點,極小值為1.
26.y=Ce-9x本題考查的知識點為求解可分離變量微分方程.
分離變量
兩端分別積分
lny=-9x+C1,y=Ce-9x.
27.
28.1
29.yxy-1dx+xylnxdy
30.
31.
32.x=-3
33.
34.e-2本題考查了函數(shù)的極限的知識點,
35.(-33)
36.-3sin3x-3sin3x解析:
37.(03)(0,3)解析:
38.(-1,1)本題考查的知識點為求冪級數(shù)的收斂區(qū)間.
所給級數(shù)為不缺項情形.
可知收斂半徑,因此收斂區(qū)間為
(-1,1).
注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點.
本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時過于緊張而導(dǎo)致的錯誤.
39.1
40.
41.
42.由等價無窮小量的定義可知
43.
44.
45.由一階線性微分方程通解公式有
46.
列表:
說明
47.函數(shù)的定義域為
注意
48.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
49.
50.
則
51.
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
53.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
54.
55.
56.
57.
58.由二重積分物理意義知
59.
60.
61.
62.
63.
64.
65.解法1原式(兩次利用洛必達(dá)法則)解法2原式(利用等價無窮小代換)本題考查的知識點為用洛必達(dá)法則求極限.
由于問題為“∞-∞”型極限問題,應(yīng)先將求極限的函數(shù)通分,使所求極限化為“”型問題.
如果將上式右端直接利用洛必達(dá)法則求之,則運算復(fù)雜.注意到使用洛必達(dá)法則求極限時,如果能與等價無窮小代換相結(jié)合,則問題常能得到簡化,由于當(dāng)x→0時,sinx~x,因此
從而能簡化運算.
本題考生中常見的錯誤為:由于當(dāng)x→0時,sinx~x,因此
將等價無窮小代換在加減法運算中使用,這是不允許的.
66.本題考查的知識點為不定積分的換元積分運算.
【解題指導(dǎo)】
本題中出現(xiàn)的主要問題是不定積分運算丟掉任意常數(shù)C.
67.
68.本題考查的知識點為二重積分的物理應(yīng)用.
解法1利用對稱性.
解法2
若已知平面薄片D,其密度為f(x,Y),則所給平面薄片的質(zhì)量M可以由二重積分表示為
69.
70.
71.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。
72.由于y=x2,則y'=2x,曲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 襄樊市重點中學(xué)2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析
- 四川省成都市雙流中學(xué)2025屆高三最后一卷語文試卷含解析
- 安徽省合肥一中2025屆高考語文全真模擬密押卷含解析
- 2025屆河南省豫西南部分示范性高中高三二診模擬考試英語試卷含解析
- 《solidworks 機(jī)械設(shè)計實例教程》 課件 任務(wù)4.2 齒輪軸的設(shè)計
- 浙江省高中發(fā)展共同體2025屆高考英語一模試卷含解析
- 《保險業(yè)案件管理》課件
- 普通高等學(xué)校2025屆高考英語三模試卷含解析
- 《設(shè)備管理制度講》課件
- 2025屆四川大學(xué)附屬中學(xué)高考英語考前最后一卷預(yù)測卷含解析
- HG-T 20583-2020 鋼制化工容器結(jié)構(gòu)設(shè)計規(guī)范
- T-SHNA 0004-2023 有創(chuàng)動脈血壓監(jiān)測方法
- 新版資質(zhì)認(rèn)定評審準(zhǔn)則詳細(xì)解讀課件
- 靜脈留置針的護(hù)理查房
- 發(fā)掘無限潛能成就最好的自己主題班會課件
- 主動呼吸循環(huán)技術(shù)方案
- 醫(yī)院能源管理平臺建設(shè)方案合集
- 麻醉科臨床診療指南2020版
- 二 《微寫作?抒發(fā)情感》(教學(xué)設(shè)計)-【中職專用】高二語文精講課堂(高教版2023·職業(yè)模塊)
- 英語倒裝句課件(全面詳細(xì))
- 課程設(shè)計電動葫蘆設(shè)計
評論
0/150
提交評論