浙江臺(tái)州中學(xué)2021-2022學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第1頁(yè)
浙江臺(tái)州中學(xué)2021-2022學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第2頁(yè)
浙江臺(tái)州中學(xué)2021-2022學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第3頁(yè)
浙江臺(tái)州中學(xué)2021-2022學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第4頁(yè)
浙江臺(tái)州中學(xué)2021-2022學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余13頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.2.已知集合,,則為()A. B. C. D.3.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}4.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.26.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.7.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)全校名同學(xué)每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為()A. B. C. D.8.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.109.已知拋物線,過(guò)拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.10.已知的展開(kāi)式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.11.某幾何體的三視圖如圖所示,則該幾何體的最長(zhǎng)棱的長(zhǎng)為()A. B. C. D.12.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的二項(xiàng)展開(kāi)式中,含項(xiàng)的系數(shù)為_(kāi)_________.14.已知雙曲線的左右焦點(diǎn)為,過(guò)作軸的垂線與相交于兩點(diǎn),與軸相交于.若,則雙曲線的離心率為_(kāi)________.15.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為_(kāi)__________.16.若關(guān)于的不等式在時(shí)恒成立,則實(shí)數(shù)的取值范圍是_____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點(diǎn)E,F(xiàn)是線段PC中點(diǎn),G為線段EC中點(diǎn).Ⅰ求證:平面PBD;Ⅱ求證:.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的解集包含,求的取值范圍.19.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項(xiàng)公式;若數(shù)列滿足,求的前項(xiàng)和.20.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對(duì)于任意恒成立,求的取值范圍.21.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.22.(10分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開(kāi)展愛(ài)國(guó)衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開(kāi)展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過(guò)問(wèn)卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過(guò)數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問(wèn)卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,,,,,的大小關(guān)系.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù),可知命題的真假,然后對(duì)取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對(duì)命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點(diǎn)睛】本題主要考查對(duì)命題真假的判斷以及真值表的應(yīng)用,識(shí)記真值表,屬基礎(chǔ)題.2.C【解析】

分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因?yàn)榧?,,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.3.D【解析】

解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧希蔬x:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.4.C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點(diǎn)定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫(huà)法.5.D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.6.D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)椋杂校菏欠匠痰亩?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.7.D【解析】

由試驗(yàn)結(jié)果知對(duì)0~1之間的均勻隨機(jī)數(shù),滿足,面積為1,再計(jì)算構(gòu)成鈍角三角形三邊的數(shù)對(duì),滿足條件的面積,由幾何概型概率計(jì)算公式,得出所取的點(diǎn)在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計(jì)的值.【詳解】解:根據(jù)題意知,名同學(xué)取對(duì)都小于的正實(shí)數(shù)對(duì),即,對(duì)應(yīng)區(qū)域?yàn)檫呴L(zhǎng)為的正方形,其面積為,若兩個(gè)正實(shí)數(shù)能與構(gòu)成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點(diǎn)睛】本題考查線性規(guī)劃可行域問(wèn)題及隨機(jī)模擬法求圓周率的幾何概型應(yīng)用問(wèn)題.線性規(guī)劃可行域是一個(gè)封閉的圖形,可以直接解出可行域的面積;求解與面積有關(guān)的幾何概型時(shí),關(guān)鍵是弄清某事件對(duì)應(yīng)的面積,必要時(shí)可根據(jù)題意構(gòu)造兩個(gè)變量,把變量看成點(diǎn)的坐標(biāo),找到試驗(yàn)全部結(jié)果構(gòu)成的平面圖形,以便求解.8.C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則由,,得解得,,所以.故選C.【點(diǎn)睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項(xiàng)的值,可通過(guò)構(gòu)建和的方程組求通項(xiàng)公式.9.A【解析】

設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過(guò)A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.10.D【解析】因?yàn)榈恼归_(kāi)式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.11.D【解析】

先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長(zhǎng)度.【詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長(zhǎng)棱的長(zhǎng)為故選:D【點(diǎn)睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.12.B【解析】

取的中點(diǎn),連接、,推導(dǎo)出,設(shè)設(shè)球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計(jì)算出球的半徑,再利用球體的表面積公式可得出結(jié)果.【詳解】取的中點(diǎn),連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設(shè)球心為,和的中心分別為、.由球的性質(zhì)可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,解題時(shí)要分析幾何體的結(jié)構(gòu),找出球心的位置,并以此計(jì)算出球的半徑長(zhǎng),考查推理能力與計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

寫出二項(xiàng)展開(kāi)式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開(kāi)式、需熟記二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.14.【解析】

由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點(diǎn)睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問(wèn)題,一般如果能結(jié)合幾何性質(zhì),可大大減少計(jì)算量.15.2.【解析】

如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問(wèn)題,考查了直線與平面所成角的計(jì)算.對(duì)于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.16.【解析】

利用對(duì)數(shù)函數(shù)的單調(diào)性,將不等式去掉對(duì)數(shù)符號(hào),再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問(wèn)題,進(jìn)而求得的取值范圍?!驹斀狻坑傻茫瑑蛇呁?,得到,,,設(shè),,由函數(shù)在上遞減,所以,故實(shí)數(shù)的取值范圍是?!军c(diǎn)睛】本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性,以及恒成立問(wèn)題的常規(guī)解法——分離參數(shù)法。三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析;(2)見(jiàn)解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳解:證明:(1)連結(jié)PE,因?yàn)镚.、F為EC和PC的中點(diǎn),,又平面,平面,所以平面(II)因?yàn)榱庑蜛BCD,所以,又PA⊥面ABCD,平面,所以,因?yàn)槠矫?,平面,且,平面,平面,∴BD⊥FG.點(diǎn)睛:(1)本題主要考查空間位置關(guān)系的證明,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握水平和空間想象轉(zhuǎn)化能力.(2)證明空間位置關(guān)系,一般有幾何法和向量法,本題利用幾何法比較方便.18.(1);(2).【解析】

(1)對(duì)范圍分類整理得:,分類解不等式即可.(2)利用已知轉(zhuǎn)化為“當(dāng)時(shí),”恒成立,利用絕對(duì)值不等式的性質(zhì)可得:,問(wèn)題得解.【詳解】當(dāng)時(shí),,當(dāng)時(shí),由得,解得;當(dāng)時(shí),無(wú)解;當(dāng)時(shí),由得,解得,所以的解集為(2)的解集包含等價(jià)于在上恒成立,當(dāng)時(shí),等價(jià)于恒成立,而,∴,故滿足條件的的取值范圍是【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,還考查了轉(zhuǎn)化能力及絕對(duì)值不等式的性質(zhì),考查計(jì)算能力,屬于中檔題.19.,;.【解析】

由,公差,有,,成等比數(shù)列,所以,解得.進(jìn)而求出數(shù)列,的通項(xiàng)公式;當(dāng)時(shí),由,所以,當(dāng)時(shí),由,,可得,進(jìn)而求出前項(xiàng)和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項(xiàng)公式.?dāng)?shù)列的公比,其通項(xiàng)公式.當(dāng)時(shí),由,所以.當(dāng)時(shí),由,,兩式相減得,所以.故所以的前項(xiàng)和,.又時(shí),,也符合上式,故.【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項(xiàng)公式,前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,方程思想,分類討論思想,應(yīng)用意識(shí),屬于中檔題.20.(1)或;(2).【解析】

(1)時(shí),分類討論,去掉絕對(duì)值,分類討論解不等式.(2)時(shí),分類討論去絕對(duì)值,得到解析式,由函數(shù)的單調(diào)性可得的最小值,通過(guò)恒成立問(wèn)題,得到關(guān)于的不等式,得到的取值范圍.【詳解】(1)因?yàn)?,所以,所以不等式等價(jià)于或或,解得或.所以不等式的解集為或.(2)因?yàn)椋?,根?jù)函數(shù)的單調(diào)性可知函數(shù)的最小值為,因?yàn)楹愠闪?,所以,解?所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查分類討論去絕對(duì)值,分段函數(shù)求最值,不等式恒成立問(wèn)題,屬于中檔題.21.(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個(gè)復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計(jì)算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論