版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
本科畢業(yè)設(shè)計(jì)說明書外文文獻(xiàn)及譯文文獻(xiàn)、資料題目:文獻(xiàn)、資料來源:文獻(xiàn)、資料發(fā)表(出版)日期:2008.3.17院(部):專業(yè):給水排水工程班級(jí):姓名:學(xué)號(hào):指導(dǎo)教師:翻譯日期:外文文獻(xiàn):WastewaterTreatmentABSTRACT:Abioreactorsystemwith30packedgelenvelopeswasinstalledinathermalpowerplantfortheremovalofnitrogenfromammonia-containingdesulfurizationwastewater.Eachenvelopeconsistedofdouble-sidedplategelscontainingNitrosomonaseuropaeaandParacoccusdenitrificanscellswithaninternalspaceinbetweenforinjectinganelectrondonor.Theenvelopecanremoveammoniafromwastewaterinasinglestep.Whenthewastewaterwascontinuouslytreatedwiththebioreactorsystem,itremoved95.0%ofthetotalnitrogenintheinlet,andthetotalnitrogenconcentrationintheoutletwasbelow9.0mgL?1.Themaximumnitrogenremovalratewas6.0gday?1persquaremeterofthegelarea.Themaximumutilizationefficiencyoftheinjectedethanolfordenitrificationwas98.4%,andthetotalorganiccarbonconcentrationintheoutflowwasmaintainedatalowlevel.Sincethebioreactorsystemcouldusetheelectrondonoreffectively,itwasnotnecessarytouseanadditionalaerobictanktoremovetheelectrondonorandasettlingtanktosegregatethesurplussludgecontainingbacteriafromwastewater.Ourconceptofusingpackedgelenvelopeswouldbehighlyeffectiveforconstructingasimpleandefficientnitrogenremovalsystemcapableofsimultaneousnitrificationanddenitrification.1.IntroductionEutrophication,whichiscausedbyanexcessivenitrogeninflowfromdomesticandindustrialeffluents,causessevereadverseeffectsontheenvironmentofclosedwatersystem[1].InJapan,algalbloomsandredtidesoccurfrequentlyandhavecauseddamagetothewaterserviceandfishingindustryinTokyoBay,IseBay,andtheSetoInlandSea.Therefore,strictregulationswereappliedfordischargingnitrogeneffluentsintotheindustrialwastewater.Theammoniaremovalprocessusingmicroorganismshasnowbeendividedintotwokindsofbiologicalprocesses:oneisthetraditionalnitrification/denitrificationmethod[2],andtheotherisanewlydevelopedanaerobicammoniumoxidation(anammox)method[3,4].Theanammoxprocesscombinesammoniaandnitriteintonitrogengasanaerobically.Itisanattractivemethodwithgreatpromise.However,theanammoxprocessrequiresanadditionalnitrificationprocessforthepartialconversionofammoniatonitrite.Presently,nitrogen(ammonia)removalismostlycarriedoutthroughtwoconversionsteps,namely,aerobicnitrificationandanaerobicdenitrification.Thismethod,however,hasadisadvantage.Whentreatingwastewaterwithoutorganicmatters,anelectrondonorisrequiredfordenitrification.Inthiscase,itrequiresanadditionalaerobicsteptoremovesurpluselectrondonorsandasettlingsteptosegregatetheactivatedsludgecontainingbacteriafromthewastewater.Sincetherearemanystepsinthepresentnitrogenremovalsystems,acomplicatedsequenceofoperationsisnecessaryandalargeinstallationareaisrequired.Severalresearcheshavebeenconductedinanattempttocombinethetwoconversionsteps(nitrificationanddenitrification)intoasinglebioreactor[5–7].Polymericbeads,inwhichanitrifierandadenitrifierwerecoimmobilized,wereusedtoremovenitrogeninasinglestep.Nitrificationoccurredontheouterlayerofbeads,anddenitrification,inthecoreofbeads.However,theelectrondonorswereaddeddirectlytothewastewaterinthesesystems.Therefore,anadditionalaerobicstepwasrequiredfortheremovalofsurpluselectrondonors,andtheefficiencyofutilizingelectrondonorswasrelativelylow.Tosimplifythepresentsystemsusedfornitrogenremoval,wehaveproposedandinvestigatedanovelimmobilized-cellbioreactorcontainingpackedgelenvelopescapableofsimultaneousnitrificationanddenitrification[8].Thepackedgelenvelopesconsistoftwopolymericgelplateswithaninternalspacebetweenthemforinjectingtheelectrondonorfordenitrification.Anammoniaoxidizer,namely,Nitrosomonaseuropaea,andadenitrifier,namely,Paracoccusdenitrificans,arecoimmobilizedintheplategel.TheimmobilizedN.europaeaoxidizesammoniatonitriteontheoutersurfaceoftheplatethatisinaerobiccontactwiththewastewatercontainingammonia;theimmobilizedP.denitrificansreducesnitritetonitrogengasintheinsideofplatethatisinanaerobiccontactwiththeelectrondonor.Thissystemdoesnotrequireanadditionalaerobicstepbecausetheelectrondonorsarenotsuppliedtothewastewaterdirectlybuttotheinternalspaceofthegelplate.Thisresultsinanincreaseintheutilizationefficiencyoftheelectrondonorforthedenitrificationprocessandadecreaseinthequantityofsurplussludge.Inthisstudy,weinvestigatedalarge-scalebioreactorusingthinnerpackedgelenvelopesinwhichN.europaeaandP.Denitrificanscellsarecoimmobilized,treatedtheammonia-containingwastewaterfromacoal-firedthermalpowerplant,andstudiedthenitrogenremovalcapacityofthesystem.2.Materialsandmethods2.1.BacterialstrainsandculturemediumsThenitrifierN.europaeaNBRC14298andthedenitrifierP.denitrificansJCM6892wereusedinthisstudy.N.europaeawasaerobicallyculturedat30?Cinamediumcontainingthefollowing(gL?1):(NH4)2SO4,0.5;NaCl,0.3;K2HPO4,1.0;MgSO4·7H2O,0.3;FeSO4·7H2O,0.03;phenolred,0.002(pH8.0).P.denitrificanswasaerobicallyculturedat30?Cinamediumcontainingthefollowing(gL?1):peptone(Difco),10.0;meatextract(Difco),10.0;NaCl,5.0(pH7.2).Allnutrientsweredissolvedindistilledwater.2.2.CharacteristicsoftheactualwastewaterDesulfurizationwastewaterfromtheTakeharathermalpowerplant(TakeharaCity,HiroshimaPrefecture,Japan)wasusedinthisstudy.Themaximumoutputofthiscoal-firedthermalpowerplantwas1300MW.Theheavymetalscontainedinthisdesulfurizationwastewaterwereremovedinapreviousprocess.Theorganiccarboncontentofthewastewaterwasextremelylow.Thetotalorganiccarbon(TOC)concentrationinthewastewaterrangedbetween0.0and5.4mgL?1.Theformofnitrogeninthewastewaterwasmostlyammonia(17.6–108.4mgL?1).Moreover,nitrite(3.8–37.3mgL?1)andnitrate(0.0to26.6mgL?1)wereOftendetectedduringtheoperations.Phosphateswerenotdetected(<0.1mgL?1)inthewastewateralthoughlargeamountsofsulfatewereobserved(2412–13,176mgL?1).2.3.PackedgelenvelopeN.europaeaandP.denitrificanscellswereharvestedbycentrifugation(20,000g,10min,4?C)andwashed3timeswithphosphatebuffercontaining9.0gL?1ofNa2HPO4·12H2Oand1.5gL?1KH2PO4(pH7.5).N.europaea(dryweight,4mgmL?1)andP.denitrificans(dryweight,3.4mgmL?1)cellsweresuspendedinphosphatebuffer.ThesuspensionwasthenmixedwiththephotocrosslinkablepolymerPVA-SbQ(SPP-H-13;ToyoGoseiKogyoCo.)intheratioof1:3.Eachpackedenvelope(envelopeI)(1100mm×1100mm×12mm)consistedofaframemadeofvinylchloride,andnonwovennetsmadeofpolyethyleneterephthalate(G2260-1S;TorayCo.)wereattachedtoboththeaspectsoftheframe(Fig.1aandb).Theabovementionedbacteria–polymermixturewasspreadonthenonwovennetoftheenvelopeandwasgelledbyirradiatingwithmetalhalidelampsfor20min(1000molm?2s?1).Asthebacteria–polymermixturepenetratedintothenonwovennetslightly,thegelwassolidifiedonthenonwovennet.Theheightandwidthofgelsheetwereboth1000mm.Thethicknessofthegelsheetonthenetwas0.5mm.Next,thesameprocedurewasfollowedfortheoppositesideoftheenvelope.Astheenvelopehadtwogelsheetsandone-sidedsurfaceofeachgelsheetcouldbecontactedwithwastewater,theareaofactiveregionwas2.00m2intheenvelopeI.ThisvaluewasusedasunitgelareaforeachenvelopeI.Inaddition,athinnerpackedenvelope(envelopeII)(1250mm×1100mm×3.5mm)wasdevelopedusingthesamenonwovennetwithoutaframe(Fig.1candd).Thebacteria–polymermixturewasspreadonthenonwovennetofopenenvelopeII,andwasgelledbysameway.Theheightandwidthofgelsheetwere1200and1050mm,respectively.Thethicknessofthegelsheetwasalso0.5mm.Aftergelation,thenonwovennetimmobilizingbacteriawasfoldedasthegelsheetoutsideandmadetoanenvelope.Theareaofactiveregionwas2.52m2intheenvelopeII.ThisvaluewasusedasunitgelareaforeachenvelopeII.Thesepackedgelenvelopescontainedinternalspacesforinjectingtheelectrondonor.Threeholesweremadeatthetopofeachenvelope,andpolyurethanetubes(outerdiameter,8mm;innerdiameter,6mm)wereattachedtotheholes.Twoholesweremadeastheoutletsfornitrogengasafterdenitrification,andonecentralholewasmadetoinjecttheelectrondonorfordenitrification.2.4.BioreactorsystemAlarge-scalebioreactorsystemwasinstalledintheTakeharathermalpowerplant.Thesystemconsistedofareactortank(1.23m×1.13m×1.50m);anoverflowtank(0.29m×1.13m×1.50m);aneutralizationtankforpHadjustment;packedgelenvelopes;pumpsforwastewatercirculation;ablowerforaeration;afeederfortheelectrondonor;metersandrecordersfortemperature,pH,anddissolvedoxygenconcentrationinthereactortank;andacontrolpanel.Fig.2showstheschematicdiagramsofthesystemduringbatchandcontinuousoperations.2.5.BatchoperationThebatchoperationswerecarriedoutovernightusing10packedgelenvelopes(envelopeI)withframescontainingN.EuropaeaandP.denitrificans(Fig.1aandb)undervariousammoniaconcentrationsbyaddingammoniumsulfate.Desulfurizationwastewater(containingmostlyammonia,andsomenitriteandnitrate)originatingfromthethermalpowerplantwastreatedintheabovementionedbioreactorsystem(workingvolume,2.3m3).For50mLof10%ethanolsolution,phosphate(Na2HPO4·12H2O,0.09gL?1andKH2PO4,0.015gL?1)andtraceelements(MgSO4·7H2O,2mgL?1;CaCl2·2H2O,0.1mgL?1;NaHCO3,5mgL?1;EDTA-Fe,0.05mgL?1;ZnSO4·7H2O,1mgL?1;MnCl2·4H2O,0.3mgL?1;H3BO3,3mgL?1;CoCl2·6H2O,2mgL?1;CuCl2·2H2O,0.1mgL?1;NiCl26H2O,0.2mgL?1;andNa2MoO4·2H2O,0.3mgL?1)wereadded;thissolutionwasinjectedintotheinternalspaceofeachenvelopeevery6h.Thewastewaterwassampledforanalysisduringthebatchoperation.2.6.ContinuousoperationThewastewaterwascontinuouslytreatedusingthedevelopedbioreactorsystem(workingvolume,1.8m3)with30thinnerpackedenvelopes(envelopeII)withoutframes(Fig.1candd)attheinflowratesof0.075(operation1)or0.45(operation2)m3h?1(averageresidencetime,24or4h)fornearlyonemontheach.Every6h,40mLof10%ethanolsolutionwasinjectedintoeachenvelope(160mLday?1foreachenvelope).Thewastewaterwassampledforanalysisevery4hfrom9:00a.m.to9:00p.m.Aheaterwasusedforwarmingthewastewaterduringwinter.2.7.AnalyticalmethodsThenitrogenconcentrationsweremeasuredasNH3–N,NO2–N,andNO3–N.Theammoniaconcentrationinthewastewaterwascolorimetricallymeasuredaccordingtoapreviouslydescribedmethod[9].Thenitriteandnitrateconcentrationsweredeterminedusinganion-chromatoanalyzer(DX-AQ;DionexCo.)withanIonPacAS12Acolumn.TheTOCconcentrationwasmeasuredusingaTOCanalyzer(TOC-650;TorayEngineeringCo.).3.Results3.1.Batchoperationusingammonia-containingwastewaterWhenthewastewatercontainingvariousconcentrationsofammoniawastreatedwith10packedgelenvelopes(envelopeI)withframescontainingN.europaeaandP.denitrificans,theammoniaconcentrationinthewastewaterdecreasedgradually(Fig.3).Asmallamountofnitratewasdetected(maximum,2.6mgL?1)duringallbatchoperations.Asaresult,thetotalnitrogenconcentration(ammonia,nitrite,andnitrate)inthewastewaterdecreasedgradually.TheTOCconcentrationinthewastewaterwasunchanged(average,2.1mgL?1).ThepHinthewastewaterrangedbetween7.9and8.4.Thetemperatureinthewastewaterrangedbetween22.0and29.0?C.Theammoniaoxidationrate(thetransformationofammoniatonitrite)by10envelopes(envelopeI)wascalculatedbasedonthechangeinammoniaconcentrationevery2hduringbatchoperations.Thesystemyieldedammoniaoxidationratesintherangeof1.0–9.6gday?1persquaremeterofthegelareaatvariousinitialconcentrationsofammonia.Additionally,thenitrogenremovalrate(thetransformationofammonia,nitrite,andnitratetonitrogengas)wascalculatedbasedonthechangeinthetotalnitrogenconcentrationevery2hduringbatchoperations.Thesystemyieldednitrogenremovalratesintherangeof1.2–19.5gday?1persquaremeterofthegelarea.TherelationshipbetweenthenitrogenconcentrationandnitrogenremovalrateduringthebatchoperationisshowninFig.4.Therateofammoniaoxidationwasproportionaltotheammoniaconcentration.Moreover,therateofnitrogenremovalwasproportionaltothetotalnitrogenconcentration.Hence,thehigherthetotalnitrogenconcentrationinthewastewater,thehigherwasthenitrogenremovalrate.3.2.Nitrogenremovalincontinuousoperationusingammonia-containingwastewaterThegelareaofallenvelopesperworkingvolumehasaneffectonthevolumetricnitrogenremovalperformance.Newthinnerpackedgelenvelopes(envelopeII)weredevelopedusingnonwovennetsmadeofpolyethyleneterephthalatesoastoincreasethetotalnumberofthepackedgelenvelopescapableofintroducingintothereactortank,namely,thegelareaofallenvelopesperworkingvolume.Assumingthatthenitrogenremovalperformancepergelareaofeachenvelopeinthemodifiedenvelopes(envelopeII)wasequivalenttothatobtainedintheoriginalenvelopes(envelopeI),thevolumetricnitrogenremovalperformanceusingthemodifiedenvelopeswasestimatedtobetwiceashighasthatusingtheoriginalenvelopes.Sincethemodifiedenvelopesappearedpromisingfortreatinglargevolumesofwastewater,30modifiedenvelopeswereusedduringthecontinuousoperation.Thewastewaterwascontinuouslytreatedwith30modifiedpackedgelenvelopes(envelopeII)fornearlyonemontheach.Thetime-dependentchangesinthenitrogenconcentrationsintheinflowandoutflowattheinflowrateof0.075m3h?1(operation1)areshowninFig.5a.Thetotalnitrogenconcentrationintheinflow(37.6–127.1mgL?1)fluctuatedabruptlyasaresultofthesuddenvariationintheammoniaconcentrationintheinflow(17.6–108.4mgL?1).Comparedtotheammoniaconcentration,theconcentrationsofnitrite(11.9–26.0mgL?1)andnitrate(1.6–7.7mgL?1)intheinflowdidnotfluctuate.Theammoniaconcentrationintheoutflowwasmaintainedatalowlevel(average,1.3mgL?1)duringthecontinuousoperation.Theconcentrationsofnitrite(below4.9mgL?1)andnitrate(below1.9mgL?1)intheoutflowwerealsolow.Asaresult,thetotalnitrogenconcentrationintheoutflowrangedbetween0.4and9.0mgL?1(average,3.7mgL?1).Thetime-dependentchangesinthenitrogenremovalratesandefficienciesataninflowrateof0.075m3h?1(operation1)areshowninFig.5bandc.Theratesofammoniaoxidationandnitrogenremovalwerecalculatedbasedonthedifferencesbetweentheconcentrationsofammoniaandtotalnitrogenbothintheinflowandintheoutflow.Theammoniaoxidationraterangedbetween0.4and2.6gday?1persquaremeterofthegelarea,andthenitrogenremovalratewasintherange0.9–2.9gday?1persquaremeterofthegelarea(Fig.5b).Theammoniaandnitrogenremovalefficiencies,whichweredefinedastheratiosofthedifferencesbetweentheconcentrationsofammoniaandtotalnitrogenintheinflowandoutflowtotheconcentrationsofammoniaandtotalnitrogenintheinflow,werecalculatedfromtheconcentrationsofammoniaandtotalnitrogenintheinflowandoutflow.Thebioreactorwith30modifiedenvelopes(envelopeII)removedmostoftheammonia(averageremovalefficiency,97.1%)andtotalnitrogen(averageremovalefficiency,95.0%)inthewastewater(Fig.5c).TheaverageTOCconcentrationsintheinflowandoutflowwere0.4and4.8mgL?1,respectively.ThepHinthewastewaterrangedbetween7.2and8.4.Thetemperatureinthewastewaterwasmaintainedbetween25.0and32.0?Cbyusingaheater.Theresultsrevealedthatthemodifiedenvelopescouldachievehighnitrogenremovalefficiency.However,themaximumnitrogenremovalrateataninflowrateof0.075m3h?1wasnotveryhigh,i.e.,2.9gday?1persquaremeterofthegelarea;thiswasprobablyduetothelownitrogenloadinthereactortank.Thetime-dependentchangesinthenitrogenconcentrationsintheinflowandoutflowataninflowrateof0.45m3h?1(operation2)areshowninFig.6a.Thetotalnitrogenconcentrationintheinflow(76.2–130.1mgL?1)fluctuatedabruptlyduetothesuddenvariationintheammoniaconcentrationintheinflow,whiletheconcentrationsofnitriteandnitrateintheinflowwereunchanged.Theammonia,nitrite,andtotalnitrogenconcentrationsintheoutflowvariedduetotheabruptfluctuationintheammoniaconcentrationintheinflow(43.9–104.1mgL?1).Thenitrateconcentrationintheoutflowwasunchanged.Thetime-dependentchangesinthenitrogenremovalratesandefficienciesattheinflowrateof0.45m3h?1(operation2)areshowninFig.6bandc.Themaximumammoniaoxidationrateachievedwas9.5gday?1persquaremeterofthegelarea.Thebioreactorcapableofsimultaneousnitrificationanddenitrificationachievedamaximumnitrogenremovalrateof6.0gday?1persquaremeterofthegelarea.Thismaximumrateobtainedusingthethinnerenvelopeswasequivalenttothatobtainedwiththeoriginalenvelopes.Duringthefirst5days,theaverageratesofammoniaoxidationandnitrogenremovalwere3.7and3.2gday?1persquaremeterofgelarea,respectively.Theseratesincreasedto4.9and3.5gday?1persquaremeterofthegelareainthenext5–10days,andfurtherincreasedto7.1and4.7gday?1persquaremeterofthegelareaafter10days.Theammoniaandtotalnitrogenremovalefficienciesrangedfrom24.1%to95.8%andfrom13.5%to45.0%,respectively.TheaverageTOCconcentrationsintheinflowandoutflowwere1.6and0.9mgL?1,respectively.ThepHinthewastewaterrangedbetween7.3and8.5.Thetemperatureinthewastewaterwasmaintainedbetween25.0and32.0?Cbyusingaheater.4.Discussion4.1.NitrogenremovalperformanceunderbatchoperationThebioreactor(workingvolume,0.25L)containingeightpackedgelenvelopes(height,100mm;length,48mm;thickness,0.5mm;gelarea,0.0096m2)yieldedamaximumammoniaoxidationrateandmaximumnitrogenremovalrateof5.6and5.0gday?1persquaremeterofthegelarea,respectively,inthelaboratoryexperiment[8].Thepackedgelenvelopescapableofsimultaneousnitrificationanddenitrificationshouldbescaledupinordertotreatlargeamountofactualwastewater.Thus,thepackedgelenvelopescontainingN.europaeaandP.denitrificans(height,500mm;length,1000mm;thickness,16mm;gelarea,0.72m2)wereenlargedandthenitrogenremovalperformancewasexaminedinthepreliminaryexperiments.Whentheartificialammonia-containingwastewaterwastreatedusingalaboratorybatchsystem(workingvolume,0.35m3)withtwopackedgelenvelopes,itexhibitedamaximumammoniaoxidationrateandmaximumnitrogenremovalrateof6.9and4.6gday?1persquaremeterofthegelarea,respectively(datanotshown).Sincetheenlargedpackedgelenvelopesachievedsimilarperformance,packedgelenvelopesoffunctionalsize(envelopeI)(height,1100mm;length,1100mm;thickness,12mm;gelarea,2.00m2)weredevelopedforthescaling-upofthesysteminordertotreatlargevolumeoftheactualindustrialwastewater.Themaximumammoniaoxidationandnitrogenremovalrates,whichwerecalculatedfromthedifferencesintheammoniaandtotalnitrogenconcentrationsatthestarttimeandafter21.5h,were5.9and7.1gday?1persquaremeterofthegelarea,respectively,duringthebatchoperation.Thelargescalesystemwiththefunctionalpackedgelenvelopesexhibitedhighperformance.Particularly,thenitrogenremovalrateachievedinthisresearchwashigherthanthoseobtainedinotherexperiments,probablyduetothepresencenotonlyammoniabutalsonitriteintheinletwastewater.Theratesofammoniaoxidationandnitrogenremovalwereproportionaltotheconcentrationsofammoniaandtotalnitrogen,respectively.BecausemolecularoxygenwasnecessaryforammoniaoxidationbyN.europaea,nitrificationwascarriedoutontheoutersurfaceofthegel[10].Incontrast,thedenitrificationbyP.denitrificanswascarriedoutintheinsideofthegelsinceitrequiredananaerobicenvironment[10].Thus,fornitrification,ammoniashouldbediffusedneartheoutersurfaceofthepackedgelenvelopes.Fordenitrification,nitrite—whichpreexistedinthewastewaterandwasoxidizedfromammoniabyN.europaeaontheoutersurfaceofenvelopes—andnitrateshouldbeintroducedintotheinnerpartofthepackedgelenvelopebydiffusion.Becausetherateofdiffusionofammoniaintothepackedgelenvelopeswasproportionaltotheammoniaconcentration,theammoniaoxidationratewasthoughttobeproportionaltotheammoniaconcentration.Further,thenitrogenremovalperformanceappearedtobeproportionaltothetotalnitrogenconcentrationasthediffusionofammonia,nitrite,andnitrateintotheenvelopeswasproportionaltothetotalnitrogenconcentration.Thiswascausedbythediffusionofnitrogenintotheenvelopes.Thus,inthissystem,thediffusionofnitrogenintothepackedgelenvelopewasoneofthelimitingfactorsfornitrogenremovalperformance.Theintensityofwastewaterflowdecreasesthethicknessoftheinterfacialfilm.Thismayimprovethediffusionaffectingthenitrogenremovalperformance.4.2.UtilizationefficiencyofelectrondonorfordenitrificationAnelectrondonor(e.g.,ethanol)isrequiredfordenitrification.Thetheoreticalmaximumrateofnitrogenremovalpersquaremeterofthegelareawascalculatedasfollows:Rmax=abcA(1)whereAisthegelareaofeachenvelope(m2),aistheabsoluteethanolvolumeinjectedintoeachenvelopeperday(mlday?1),bisthepurityofethanolused,cisthenitrogenmasscapableofdenitrifyingperethanolmass(gg?1),Rmaxisthetheoreticalmaximumnitrogenremovalratepersquaremeterofthegelarea(gm?2day?1),andistherelativedensityofethanolat20?C(gml?1).Inthiscase,thevaluesofA,b,andwere2.52m2,0.995,and0.789gml?1,respectively.Inthecontinuousoperation,since160mLofa10%ethanolsolutionwasinjectedintoeachenvelopeperday,thevalueofawas16mLday?1.Thechemicalreactionoccurringduringthedenitrificationofnitritebytheuseofethanolisasfollows:4NO2?+C2H5OH→2N2+2CO2+H2O+4OH?(2)Thus,1molofethanolcandenitrify4.0molofnitrite,andtheValueofcwas1.22gg?1.Asaresult,thetheoreticalmaximumnitrogenremovalratepersquaremeterofthegelareawascalculatedtobe6.1gm?2day?1.Inthisstudy,sincethemaximumnitrogenremovalrateachievedinthecontinuousconditionwas6.0gday?1persquaremeterofthegelarea,themaximumethanolutilizationefficiencywas98.4%.Intheactivatedsludgesystem,thenitriteoxidizedfromammoniabytheammonia-oxidizingbacteriawasfurtheroxidizedtonitratebythenitrite-oxidizingbacteria.Thechemicalreactionoccurringinthedenitrificationofnitratebytheuseofethanolisasfollows:12NO3?+5C2H5OH→6N2+10CO2+9H2O+12OH?(3)Thus,1molofethanolcandenitrifyonly2.4molofnitrate.Ontheotherhand,inthepresentsystem,therewasnonitrateaccumulationinthewastewatersincethedenitrificationofnitriteoccurreddirectly.Asaresult,theethanolrequirementinthepresentsystemwastheoretically60%ofthatintheactivatedsludgesystem.Intheactivatedsludgesystem,theamountofelectrondonorempiricallyinjectedforthedenitrificationstepwastwicethatofthetheoreticalrequirement.Thus,thepresentsystemcandecreaseethanolrequirementto30%ascomparedwiththeactualinput.Infact,thepresentsystemwiththemodifiedpackedgelenvelopes(envelopeII)couldusetheelectrondonor(e.g.,ethanol)effectivelyinthisstudy.TheTOCconcentrationintheoutflowwasmaintainedatalowlevel(averageconcentrationswere4.8and0.9mgL?1athydraulicretentiontimeof24and4h,respectively)throughthecontinuousoperation.Ontheotherhand,intheanoxicdenitrificationbioreactorcontainingpackedgelenvelopesinwhichonlyP.denitrificanscellswereimmobilized,ahighlevelofTOCwaspresentintheoutflowwhenthetotalnitrogenconcentrationwasrelativelylow[11].Thisdifferencewascausedbytheinstallationofanaerationsysteminthispilottest,indicatingthatmoderateaerationinthereactortankisconsiderablyeffectiveindecreasingtheTOCconcentrationintheoutflow.Thus,ourbioreactordoesnotrequireanadditionalaerobictanktoremovesurpluselectrondonorsreleasedfromthepackedgelenvelopesandasettlingtanktosegregatesurplussludgecontainingbacteriafromthewastewater.Thisconceptofusingthepackedgelenvelopeswouldbehighlyeffectiveforconstructingasimpleandefficientnitrogenremovalsystemcapableofsimultaneousnitrificationanddenitrification.4.3.VolumetricnitrogenremovalperformanceThemodifiedpackedgelenvelopes(envelopeII)exhibitedmaximumnitrogenremovalrateof6.0gday?1persquaremeterofthegelarea.Thisvaluecorrespondedtothevolumetricnitrogenremovalperformanceof0.252kgm?3day?1.Thevolumetricnitrogenremovalperformances(NH3→N2)ofthenitrogenremovalsystemsusingimmobilizedcellsaresummarizedinTable1.Thewater-jacketedglasscolumnreactorcouldremove80mgofnitrogen(200mLof400mgL?1ammoniamedium)forapproximately100h[7].Thevolumetricnitrogenremovalperformancewascalculatedas0.61kgm?3day?1.Thenitrogenremovalrateof5.1mmols?1percubicmeterofthegel(gelload,25%)wasachievedinabubblecolumnreactorusingdouble-layerbeadswithcoimmobilizedN.europaeaandPseudomonassp.[5].Thisratewasequivalenttothevolumetricnitrogenremovalperformanceof1.54kgm?3day?1.Ontheotherhand,thenitrogenremovalsystemusingimmobilizedmicroorganismsachievedanitrogenremovalrateof0.066kgm?3day?1[12].Thenitrogenremovalsystemsusingactivatedsludgeexhibitednitrogenremovalperformancesof0.087–0.18kgm?3day?1intheactualthermalpowerplants.Ourbiore
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版項(xiàng)目部與施工班組安全生產(chǎn)責(zé)任協(xié)議版B版
- 2024年示范性夫妻離異協(xié)議范本版B版
- 二零二五年企業(yè)辦公設(shè)備采購與優(yōu)化升級(jí)合同
- 2025版空?qǐng)龅刈赓U合同范本-環(huán)境友好型租賃83篇
- 2023年數(shù)控超精密磨床項(xiàng)目融資計(jì)劃書
- 課題申報(bào)書:大學(xué)生積極心理品質(zhì)的數(shù)智化識(shí)別與精準(zhǔn)化培育研究
- 2025版帶司機(jī)租車車輛租賃、代駕及保險(xiǎn)服務(wù)合同樣本3篇
- 二零二五年度27項(xiàng)教育培訓(xùn)項(xiàng)目投資合同范本3篇
- 2024年貨柜購銷合同范本
- 2025版商品房廣告投放策略合同2篇
- word 公章 模板
- T∕ZSQX 008-2020 建設(shè)工程全過程質(zhì)量行為導(dǎo)則
- ISO-IEC17025-2017實(shí)驗(yàn)室管理體系全套程序文件
- 業(yè)務(wù)員手冊(cè)內(nèi)容
- pH值的測(cè)定方法
- 輸出軸的機(jī)械加工工藝規(guī)程及夾具設(shè)計(jì)
- 元旦文藝匯演校長(zhǎng)致辭
- 國(guó)家開放大學(xué)電大本科《管理案例分析》2023-2024期末試題及答案試卷編號(hào):1304
- 離合器接合叉機(jī)械工藝說明書
- PWM脈寬直流調(diào)速系統(tǒng)設(shè)計(jì)及 matlab仿真驗(yàn)證
- 蜂窩煤成型機(jī)設(shè)計(jì)方案.doc
評(píng)論
0/150
提交評(píng)論