版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年安徽省淮南市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.A.A.2
B.1
C.1/2e
D.
2.A.A.-(1/2)B.1/2C.-1D.2
3.
4.A.A.
B.
C.
D.
5.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
6.函數(shù)z=x2-xy+y2+9x-6y+20有
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
7.在穩(wěn)定性計(jì)算中,若用歐拉公式算得壓桿的臨界壓力為Fcr,而實(shí)際上壓桿屬于中柔度壓桿,則()。
A.并不影響壓桿的臨界壓力值
B.實(shí)際的臨界壓力大于Fcr,是偏于安全的
C.實(shí)際的臨界壓力小于Fcr,是偏于不安全的
D.實(shí)際的臨界壓力大于Fcr,是偏于不安全的
8.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。
A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度
9.
10.
11.
12.()。A.3B.2C.1D.0
13.A.A.4B.-4C.2D.-2
14.
15.
16.
17.由曲線y=1/X,直線y=x,x=2所圍面積為
A.A.
B.B.
C.C.
D.D.
18.
19.
20.設(shè)y=2x,則dy=A.A.x2x-1dx
B.2xdx
C.(2x/ln2)dx
D.2xln2dx
21.
A.
B.
C.
D.
22.
23.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
24.
25.
26.設(shè)二元函數(shù)z==()A.1
B.2
C.x2+y2D.
27.下列()不是組織文化的特征。
A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性
28.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c29.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
30.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
31.
32.控制工作的實(shí)質(zhì)是()
A.糾正偏差B.衡量成效C.信息反饋D.擬定標(biāo)準(zhǔn)33.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
34.∫sin5xdx等于().
A.A.
B.
C.
D.
35.
36.
37.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
38.
39.設(shè)函數(shù)f(x)與g(x)均在(α,b)可導(dǎo),且滿足f'(x)<g'(x),則f(x)與g(x)的關(guān)系是
A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能確定大小40.A.A.
B.
C.
D.
41.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.42.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]
B.[-1,1]
C.[1,+∞)
D.(-∞,+∞)
43.
44.
45.
46.A.A.0B.1C.2D.任意值
47.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)48.A.A.
B.
C.
D.
49.()。A.
B.
C.
D.
50.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx二、填空題(20題)51.
52.
53.
54.
55.
56.
57.
58.設(shè)函數(shù)f(x)=x-1/x,則f'(x)=________.
59.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。60.61.若f(ex)=1+e2x,且f(0)=1,則f(x)=________。
62.
63.
64.
65.
66.
67.
68.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=__________
69.
70.
三、計(jì)算題(20題)71.將f(x)=e-2X展開為x的冪級(jí)數(shù).72.求微分方程的通解.73.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則74.
75.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.76.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
77.
78.79.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.80.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.81.
82.求微分方程y"-4y'+4y=e-2x的通解.
83.84.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
85.求曲線在點(diǎn)(1,3)處的切線方程.86.
87.證明:
88.
89.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
90.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).四、解答題(10題)91.
92.求微分方程y"+9y=0的通解。
93.
94.95.
96.
97.98.99.設(shè)y=ln(1+x2),求dy。
100.
五、高等數(shù)學(xué)(0題)101.
六、解答題(0題)102.
參考答案
1.B
2.A
3.B
4.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
可知應(yīng)選D.
5.B
6.D本題考查了函數(shù)的極值的知識(shí)點(diǎn)。
7.B
8.D
9.D
10.A
11.A
12.A
13.D
14.C解析:
15.D
16.C
17.B本題考查了曲線所圍成的面積的知識(shí)點(diǎn),
曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,
18.C解析:
19.D解析:
20.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。
21.C
22.B
23.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于,可知f'(a)=-1,因此選A.
由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.
24.B
25.B
26.A
27.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。
28.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
29.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯(cuò)誤是選C。如果畫個(gè)草圖,則可以避免這類錯(cuò)誤。
30.C本題考查的知識(shí)點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
31.C
32.A解析:控制工作的實(shí)質(zhì)是糾正偏差。
33.A
34.A本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
,可知應(yīng)選D.
35.A
36.B解析:
37.D
38.B
39.D解析:由f'(x)<g'(x)知,在(α,b)內(nèi),g(x)的變化率大于f(x)的變化率,由于沒有g(shù)(α)與f(α)的已知條件,無法判明f(x)與g(x)的關(guān)系。
40.D
41.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
42.B
43.A
44.A
45.D
46.B
47.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
48.Dy=cos3x,則y'=-sin3x*(3x)'=-3sin3x。因此選D。
49.A
50.Cy=cosx,y'=-sinx,y''=-cosx.51.0
本題考查的知識(shí)點(diǎn)為無窮小量的性質(zhì).
52.
53.
54.-1
55.6x2
56.1/x
57.
58.1+1/x2
59.
60.1.
本題考查的知識(shí)點(diǎn)為反常積分,應(yīng)依反常積分定義求解.
61.因?yàn)閒"(ex)=1+e2x,則等式兩邊對(duì)ex積分有
62.
63.(03)(0,3)解析:
64.1/e1/e解析:
65.-5-5解析:
66.2x-4y+8z-7=067.
68.
69.
70.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:
71.
72.73.由等價(jià)無窮小量的定義可知74.由一階線性微分方程通解公式有
75.函數(shù)的定義域?yàn)?/p>
注意
76.由二重積分物理意義知
77.
78.
79.
80.
81.
82.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
83.
84.
85.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
86.
則
87.
88.
89.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【2021屆備考】2021屆全國(guó)名校數(shù)學(xué)試題分類解析匯編(12月第三期):M單元-推理與證明
- 音樂教師培訓(xùn)總結(jié)5篇
- 【紅對(duì)勾】2021-2022學(xué)年人教版高中政治必修一習(xí)題-第一單元-生活與消費(fèi)-課時(shí)作業(yè)6
- 【每日一練】《晨讀晚練》英語(yǔ)高三年級(jí)上學(xué)期第五周參考答案及解析5
- 【全程復(fù)習(xí)方略】2022屆高考數(shù)學(xué)(文科人教A版)大一輪專項(xiàng)強(qiáng)化訓(xùn)練(五)圓錐曲線的綜合問題-
- 2025年七年級(jí)統(tǒng)編版語(yǔ)文寒假預(yù)習(xí) 第01講 孫權(quán)勸學(xué)
- 【全程復(fù)習(xí)方略】2020年高考化學(xué)單元評(píng)估檢測(cè)(四)(魯科版-福建專供)
- 浙江省溫州蒼南2023-2024學(xué)年第二學(xué)期期末檢測(cè)卷 六年級(jí)下冊(cè)科學(xué)
- 【全程復(fù)習(xí)方略】2022屆高考數(shù)學(xué)(文科人教A版)大一輪課時(shí)作業(yè):10.3-幾何概型-
- 【全程復(fù)習(xí)方略】2022屆高考數(shù)學(xué)(文科人教A版)大一輪課時(shí)作業(yè):2.3-函數(shù)的奇偶性與周期性-
- 泰州市2022-2023學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題【帶答案】
- JGJ276-2012 建筑施工起重吊裝安全技術(shù)規(guī)范 非正式版
- QCT1067.4-2023汽車電線束和電器設(shè)備用連接器第4部分:設(shè)備連接器(插座)的型式和尺寸
- 2019電子保單業(yè)務(wù)規(guī)范
- 學(xué)堂樂歌 說課課件-2023-2024學(xué)年高中音樂人音版(2019) 必修 音樂鑒賞
- 幕墻工程材料組織、運(yùn)輸裝卸和垂直運(yùn)輸方案
- 灌溉用水循環(huán)利用技術(shù)
- 泌尿科一科一品匯報(bào)課件
- 2024年江西省三校生高職英語(yǔ)高考試卷
- 中國(guó)古代文學(xué)智慧樹知到期末考試答案章節(jié)答案2024年廣州大學(xué)
- 重慶市南岸區(qū)2022-2023學(xué)年五年級(jí)上學(xué)期期末語(yǔ)文試卷
評(píng)論
0/150
提交評(píng)論