版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第十二節(jié)導(dǎo)數(shù)的綜合應(yīng)用最新考綱展示1.會(huì)求閉區(qū)間上函數(shù)的最大值、最小值(其中多項(xiàng)式函數(shù)一般不超過三次).2.會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問題.一、函數(shù)的最值與導(dǎo)數(shù)1.函數(shù)y=f(x)在[a,b]上的最大值點(diǎn)x0指的是:函數(shù)在這個(gè)區(qū)間上所有點(diǎn)的函數(shù)值都
f(x0).2.函數(shù)y=f(x)在[a,b]上的最小值點(diǎn)x0指的是:函數(shù)在這個(gè)區(qū)間上所有點(diǎn)的函數(shù)值都
f(x0).不超過不小于二、生活中的優(yōu)化問題利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟1.極值只能在定義域內(nèi)部取得,而最值卻可以在區(qū)間的端點(diǎn)取得,有極值的未必有最值,有最值的未必有極值;極值有可能成為最值,最值只要不在端點(diǎn)必定是極值.2.求函數(shù)在某個(gè)閉區(qū)間[a,b]上的最值,只需求出函數(shù)在區(qū)間[a,b]內(nèi)的極值及在區(qū)間端點(diǎn)處的函數(shù)值,大的是最大值,小的是最小值.1.函數(shù)f(x)=x4-4x+3在區(qū)間[-2,3]上的最小值為(
)A.72
B.27C.-2 D.0解析:f
′(x)=4x3-4=0?x=1,當(dāng)x>1時(shí)f
′(x)>0,x<1時(shí)f
′(x)<0,故f(x)在[-2,3]上的最小值為f(1),f(1)=1-4+3=0,故選D.答案:D解析:由y′=x2-39x-40=0,得x=-1或x=40,由于0<x<40時(shí),y′<0;當(dāng)x>40時(shí),y′>0.所以當(dāng)x=40時(shí),y有最小值.答案:40函數(shù)的最值與導(dǎo)數(shù)(師生共研)規(guī)律方法
(1)求一個(gè)函數(shù)在閉區(qū)間上的最值和在無窮區(qū)間(或開區(qū)間)上的最值時(shí),方法是不同的.求函數(shù)在無窮區(qū)間(或開區(qū)間)上的最值,不僅要研究其極值情況,還要研究其單調(diào)性,并通過單調(diào)性和極值情況,畫出函數(shù)的大致圖象,然后借助圖象觀察得到函數(shù)的最值.(2)分類討論時(shí),標(biāo)準(zhǔn)必須統(tǒng)一,分類后要做到無遺漏、不重復(fù),還要注意不越級(jí)討論,層次分明,能避免分類的題目不要分類.(3)分類討論的步驟:①確定分類討論的對象和分類標(biāo)準(zhǔn).②合理分類,逐類討論.③歸納總結(jié),得出結(jié)論.1.已知函數(shù)f(x)=x3-3ax2+b(x∈R),其中a≠0,b∈R.(1)求函數(shù)f(x)的單調(diào)區(qū)間;解析:(1)f
′(x)=3x2-6ax=3x(x-2a),令f
′(x)=0,得x1=0,x2=2a.①當(dāng)a>0時(shí),0<2a,當(dāng)x變化時(shí),f
′(x),f(x)的變化情況如下表:所以函數(shù)f(x)的增區(qū)間是(-∞,0)和(2a,+∞),減區(qū)間是(0,2a).②當(dāng)a<0時(shí),2a<0,當(dāng)x變化時(shí),f
′(x),f(x)的變化情況如下表:所以函數(shù)f(x)的增區(qū)間是(-∞,2a)和(0,+∞),減區(qū)間是(2a,0).例2
某開發(fā)商用9000萬元在市區(qū)購買一塊土地,用于建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米.已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元.(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)(2)要使整幢寫字樓每平方米的平均開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?生活中的優(yōu)化問題(師生共研)規(guī)律方法
(1)解決實(shí)際問題的關(guān)鍵在于建立數(shù)學(xué)模型和目標(biāo)函數(shù),把“問題情景”轉(zhuǎn)化為數(shù)學(xué)語言,抽象為數(shù)學(xué)問題,選擇合適的求解方法,而最值問題的應(yīng)用題,寫出目標(biāo)函數(shù)利用導(dǎo)數(shù)求最值是首選的方法,若在函數(shù)的定義域內(nèi)函數(shù)只有一個(gè)極值點(diǎn),該極值點(diǎn)即為函數(shù)的最值點(diǎn).(2)利用導(dǎo)數(shù)解決優(yōu)化問題的步驟:①審題,設(shè)未知數(shù).②結(jié)合題意列出函數(shù)關(guān)系式.③確定函數(shù)的定義域.④在定義域內(nèi)求極值、最值.⑤下結(jié)論.(2)y
′=-6x2+66x-108=-6(x2-11x+18)=-6(x-2)(x-9).令y
′=0,得x=2(舍去)或x=9,顯然,當(dāng)x∈(6,9)時(shí),y
′>0;當(dāng)x∈(9,11)時(shí),y
′<0.∴函數(shù)y=-2x3+33x2-108x-108在(6,9)上是遞增的,在(9,11)上是遞減的.∴當(dāng)x=9時(shí),y取最大值,且ymax=135,∴售價(jià)為9元時(shí),年利潤最大,最大年利潤為135萬元.導(dǎo)數(shù)在不等式中的應(yīng)用(師生共研)(1)當(dāng)a>0時(shí),f′(x),f(x)隨著x的變化如下表:函數(shù)f(x)的單調(diào)遞增區(qū)間是(-3a,a),函數(shù)f(x)的單調(diào)遞減區(qū)間是(-∞,-3a),(a,+∞).當(dāng)a<0時(shí),f
′(x),f(x)隨著x的變化如下表:函數(shù)f(x)的單調(diào)遞增區(qū)間是(a,-3a),函數(shù)f(x)的單調(diào)遞減區(qū)間是(-∞,a),(-3a,+∞).規(guī)律方法利用導(dǎo)數(shù)方法證明不等式f(x)>g(x)在區(qū)間D上恒成立的基本方法是構(gòu)造函數(shù)h(x)=f(x)-g(x),然后根據(jù)函數(shù)的單調(diào)性,或者函數(shù)的最值證明函數(shù)h(x)>0,其中一個(gè)重要技巧就是找到函數(shù)h(x)在什么地方可以等于零,這往往就是解決問題的一個(gè)突破口.3.(2013年高考新課標(biāo)全國卷Ⅰ)設(shè)函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2時(shí),f(x)≤kg(x),求k的取值范圍.解析:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=ex(cx+d+c),故b=2,d=2,a=4,d+c=4.從而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2ex(x+1).設(shè)函數(shù)F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,則F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).由題設(shè)可得F(0)≥0,即k≥1.令F′(x)=0得x1=-lnk,x2=-2.①若1≤k<e2,則-2<x1≤0,從而當(dāng)x∈(-2,x1)時(shí),F(xiàn)′(x)<0;當(dāng)x∈(x1,+∞)時(shí),F(xiàn)′(x)>0,即F(x)在(-2,x1)上單調(diào)遞減,在(x1,+∞)上單調(diào)遞增,故F(x)在[-2,+∞)上的最小值為F(x1).而F(x1)=2x1+2-x-4x1-2=-x1(x1+2)≥0.故當(dāng)x≥-2時(shí),F(xiàn)(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,則F′(x)=2e2(x+2)·(ex-e-2).從而當(dāng)x>-2時(shí),F(xiàn)′(x)>0,即F(x)在(-2,+∞)上單調(diào)遞增.而F(-2)=0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年酒店會(huì)議室場地租賃及旅游套餐合同2篇
- 二零二五年戶外運(yùn)動(dòng)俱樂部裝修設(shè)計(jì)合同2篇
- 二零二五年第3章電子發(fā)票電子合同操作規(guī)范3篇
- 二零二五版文化創(chuàng)意產(chǎn)業(yè)試用期員工激勵(lì)合同3篇
- 二零二五年度物業(yè)經(jīng)理競聘選拔合同3篇
- 二零二五版環(huán)保型廠房買賣合同范本3篇
- 幼兒園2025年度教學(xué)計(jì)劃設(shè)計(jì)與執(zhí)行合同3篇
- 二零二五年綜合性商業(yè)地產(chǎn)合作開發(fā)合同范本3篇
- 二零二五版無抵押個(gè)人寵物醫(yī)療借款合同2篇
- 二零二五年甲乙間設(shè)備租賃借款合同6篇
- 無脊椎動(dòng)物課件-2024-2025學(xué)年人教版生物七年級(jí)上冊
- 2024年銀發(fā)健康經(jīng)濟(jì)趨勢與展望報(bào)告:新老人、新需求、新生態(tài)-AgeClub
- 2024年江西省“振興杯”家務(wù)服務(wù)員競賽考試題庫(含答案)
- 吉林省2024年中考物理試題(含答案)
- 長鏈氯化石蠟
- 小學(xué)六年級(jí)數(shù)學(xué)解方程計(jì)算題
- 春節(jié)英語介紹SpringFestival(課件)新思維小學(xué)英語5A
- 進(jìn)度控制流程圖
- 2023年江蘇省南京市中考化學(xué)真題
- 【閱讀提升】部編版語文五年級(jí)下冊第四單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 現(xiàn)在完成時(shí)練習(xí)(短暫性動(dòng)詞與延續(xù)性動(dòng)詞的轉(zhuǎn)換)
評論
0/150
提交評論