2022-2023學年福建省建甌市芝華中學中考數(shù)學押題試卷含解析_第1頁
2022-2023學年福建省建甌市芝華中學中考數(shù)學押題試卷含解析_第2頁
2022-2023學年福建省建甌市芝華中學中考數(shù)學押題試卷含解析_第3頁
2022-2023學年福建省建甌市芝華中學中考數(shù)學押題試卷含解析_第4頁
2022-2023學年福建省建甌市芝華中學中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數(shù)為()A.80° B.70° C.60° D.40°2.如圖是由長方體和圓柱組成的幾何體,它的俯視圖是()A. B. C. D.3.實數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.4.為喜迎黨的十九大召開,樂陵某中學剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.5.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m6.如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°7.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(

)A.30° B.35° C.40° D.50°8.如圖,將一塊三角板的直角頂點放在直尺的一邊上,當∠2=38°時,∠1=()A.52° B.38° C.42° D.60°9.下列各數(shù)中是無理數(shù)的是()A.cos60° B. C.半徑為1cm的圓周長 D.10.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系的第一象限內(nèi),邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a).如圖,若曲線與此正方形的邊有交點,則a的取值范圍是________.12.拋物線y=ax2+bx+c的頂點為D(-1,2),與x軸的一個交點A在點(-3,1)和(-2,1)之間,其部分圖象如圖,則以下結(jié)論:①b2-4ac<1;②當x>-1時y隨x增大而減??;③a+b+c<1;④若方程ax2+bx+c-m=1沒有實數(shù)根,則m>2;

⑤3a+c<1.其中,正確結(jié)論的序號是________________.13.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為_____.14.=________15.如圖,身高1.6米的小麗在陽光下的影長為2米,在同一時刻,一棵大樹的影長為8米,則這棵樹的高度為_____米.16.某?!鞍僮兡Х健鄙鐖F為組織同學們參加學校科技節(jié)的“最強大腦”大賽,準備購買A,B兩款魔方.社長發(fā)現(xiàn)若購買2個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同.求每款魔方的單價.設A款魔方的單價為x元,B款魔方的單價為y元,依題意可列方程組為_______.三、解答題(共8題,共72分)17.(8分)先化簡,再求值÷(x﹣),其中x=.18.(8分)已知二次函數(shù)y=a(x+m)2的頂點坐標為(﹣1,0),且過點A(﹣2,﹣).(1)求這個二次函數(shù)的解析式;(2)點B(2,﹣2)在這個函數(shù)圖象上嗎?(3)你能通過左,右平移函數(shù)圖象,使它過點B嗎?若能,請寫出平移方案.19.(8分)某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.(1)求A、B兩種鋼筆每支各多少元?(2)若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購買方案?(3)文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎上再購進一批B種鋼筆,漲價賣出,經(jīng)統(tǒng)計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設文具店將新購進的B種鋼筆每支漲價a元(a為正整數(shù)),銷售這批鋼筆每月獲利W元,試求W與a之間的函數(shù)關系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?20.(8分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(秒),將線段CE繞點C順時針旋轉(zhuǎn)一個角α(α=∠BCD),得到對應線段CF.(1)求證:BE=DF;(2)當t=秒時,DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,△EPQ是直角三角形?21.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.22.(10分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.23.(12分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;(3)連接ME,并直接寫出EM的長.24.如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)平行線的性質(zhì)得到根據(jù)BE平分∠ABD,即可求出∠1的度數(shù).【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質(zhì)和平行線的性質(zhì),熟記它們的性質(zhì)是解題的關鍵.2、A【解析】分析:根據(jù)從上邊看得到的圖形是俯視圖,可得答案.詳解:從上邊看外面是正方形,里面是沒有圓心的圓,故選A.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.3、A【解析】

根據(jù)絕對值的性質(zhì)進行解答即可.【詳解】實數(shù)﹣5.1的絕對值是5.1.故選A.【點睛】本題考查的是實數(shù)的性質(zhì),熟知絕對值的性質(zhì)是解答此題的關鍵.4、C【解析】

根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關鍵在于對知識點的理解和把握.5、A【解析】【分析】由根與系數(shù)的關系可得a+b=-1然后根據(jù)所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數(shù)的關系,新定義運算等,理解并能運用新定義運算是解題的關鍵.6、B【解析】

由圖形可知AC=AC,結(jié)合全等三角形的判定方法逐項判斷即可.【詳解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴當CB=CD時,滿足SSS,可證明△ABC≌△ACD,故A可以;當∠BCA=∠DCA時,滿足SSA,不能證明△ABC≌△ACD,故B不可以;當∠BAC=∠DAC時,滿足SAS,可證明△ABC≌△ACD,故C可以;當∠B=∠D=90°時,滿足HL,可證明△ABC≌△ACD,故D可以;故選:B.【點睛】本題考查了全等三角形的判定方法,熟練掌握判定定理是解題關鍵.7、C【解析】試題分析:已知m∥n,根據(jù)平行線的性質(zhì)可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質(zhì).8、A【解析】試題分析:如圖:∵∠3=∠2=38°°(兩直線平行同位角相等),∴∠1=90°﹣∠3=52°,故選A.考點:平行線的性質(zhì).9、C【解析】分析:根據(jù)“無理數(shù)”的定義進行判斷即可.詳解:A選項中,因為,所以A選項中的數(shù)是有理數(shù),不能選A;B選項中,因為是無限循環(huán)小數(shù),屬于有理數(shù),所以不能選B;C選項中,因為半徑為1cm的圓的周長是cm,是個無理數(shù),所以可以選C;D選項中,因為,2是有理數(shù),所以不能選D.故選.C.點睛:正確理解無理數(shù)的定義:“無限不循環(huán)小數(shù)叫做無理數(shù)”是解答本題的關鍵.10、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1≤a≤【解析】

根據(jù)題意得出C點的坐標(a-1,a-1),然后分別把A、C的坐標代入求得a的值,即可求得a的取值范圍.【詳解】解:反比例函數(shù)經(jīng)過點A和點C.當反比例函數(shù)經(jīng)過點A時,即=3,解得:a=±(負根舍去);當反比例函數(shù)經(jīng)過點C時,即=3,解得:a=1±(負根舍去),則-1≤a≤.故答案為:-1≤a≤.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,關鍵是掌握反比例函數(shù)y=(k為常數(shù),k≠0)的圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.12、②③④⑤【解析】試題解析:∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>1,故①錯誤,觀察圖象可知:當x>-1時,y隨x增大而減小,故②正確,∵拋物線與x軸的另一個交點為在(1,1)和(1,1)之間,∴x=1時,y=a+b+c<1,故③正確,∵當m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=1沒有實數(shù)根,故④正確,∵對稱軸x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正確,故答案為②③④⑤.13、(,0)【解析】試題解析:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故答案為(,0).14、13【解析】=2+9-4+6=13.故答案是:13.15、6.4【解析】

根據(jù)平行投影,同一時刻物長與影長的比值固定即可解題.【詳解】解:由題可知:,解得:樹高=6.4米.【點睛】本題考查了投影的實際應用,屬于簡單題,熟悉投影概念,列比例式是解題關鍵.16、【解析】分析:設A款魔方的單價為x元,B魔方單價為y元,根據(jù)“購買兩個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同”,即可得出關于x,y的二元一次方程組,此題得解.解:設A魔方的單價為x元,B款魔方的單價為y元,根據(jù)題意得:故答案為點睛:本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.三、解答題(共8題,共72分)17、6【解析】【分析】括號內(nèi)先通分進行分式加減運算,然后再與括號外的分式進行乘除運算,化簡后代入x的值進行計算即可得.【詳解】原式===,當x=,原式==6.【點睛】本題考查了分式的化簡求值,根據(jù)所給的式子確定運算順序、熟練應用相關的運算法則是解題的關鍵.18、(1)y=﹣(x+1)1;(1)點B(1,﹣1)不在這個函數(shù)的圖象上;(3)拋物線向左平移1個單位或平移5個單位函數(shù),即可過點B;【解析】

(1)根據(jù)待定系數(shù)法即可得出二次函數(shù)的解析式;(1)代入B(1,-1)即可判斷;(3)根據(jù)題意設平移后的解析式為y=-(x+1+m)1,代入B的坐標,求得m的植即可.【詳解】解:(1)∵二次函數(shù)y=a(x+m)1的頂點坐標為(﹣1,0),∴m=1,∴二次函數(shù)y=a(x+1)1,把點A(﹣1,﹣)代入得a=﹣,則拋物線的解析式為:y=﹣(x+1)1.(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,所以,點B(1,﹣1)不在這個函數(shù)的圖象上;(3)根據(jù)題意設平移后的解析式為y=﹣(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,解得m=﹣1或﹣5,所以拋物線向左平移1個單位或平移5個單位函數(shù),即可過點B.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質(zhì)以及圖象與幾何變換.19、(1)A種鋼筆每只15元B種鋼筆每只20元;(2)方案有兩種,一方案為:購進A種鋼筆43支,購進B種鋼筆為47支方案二:購進A種鋼筆44支,購進B種鋼筆46支;(3)定價為33元或34元,最大利潤是728元.【解析】(1)設A種鋼筆每只x元,B種鋼筆每支y元,由題意得,解得:,答:A種鋼筆每只15元,B種鋼筆每支20元;(2)設購進A種鋼筆z支,由題意得:,∴42.4≤z<45,∵z是整數(shù)z=43,44,∴90-z=47,或46;∴共有兩種方案:方案一:購進A種鋼筆43支,購進B種鋼筆47支,方案二:購進A種鋼筆44只,購進B種鋼筆46只;(3)W=(30-20+a)(68-4a)=-4a2+28a+680=-4(a-)2+729,∵-4<0,∴W有最大值,∵a為正整數(shù),∴當a=3,或a=4時,W最大,∴W最大==-4×(3-)2+729=728,30+a=33,或34;答:B種鉛筆銷售單價定為33元或34元時,每月獲利最大,最大利潤是728元.20、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時,△EPQ是直角三角形【解析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,結(jié)合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,由DF=BE′知此時DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時,由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,DF=BE′,此時DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當∠EQP=90°時,如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②當∠EPQ=90°時,如圖2②,∵菱形ABCD的對角線AC⊥BD,∴EC與AC重合,∴DE=6,∴t=6秒,綜上所述,t=6秒或6秒時,△EPQ是直角三角形.【點睛】此題是菱形與動點問題,考查菱形的性質(zhì),三角形全等的判定定理,等腰三角形的性質(zhì),最短路徑問題,注意(3)中的直角沒有明確時應分情況討論解答.21、(1)證明見解析;(2)【解析】

(1)連接OC,如圖,利用切線的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進行計算即可.【詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)設⊙O半徑為r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=,∴∠COE=60°,∴S陰影=S△COE﹣S扇形COB=?3?3﹣.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.22、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標;(2)由A與B交點橫坐標,根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論