版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點(diǎn),若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°2.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°3.在平面直角坐標(biāo)系xOy中,對于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點(diǎn)的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或64.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動點(diǎn),AF⊥CE于點(diǎn)F,點(diǎn)E在弧AD上從A運(yùn)動到D的過程中,線段CF掃過的面積為()A.4π+3 B.4π+ C.π+ D.π+35.如圖,已知△ABC的三個頂點(diǎn)均在格點(diǎn)上,則cosA的值為()A. B. C. D.6.如圖,圓O是等邊三角形內(nèi)切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°7.如圖是一個由5個相同的正方體組成的立體圖形,它的俯視圖是()A. B. C. D.8.函數(shù)y=ax+b與y=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置是()A. B.C. D.9.今年我市計劃擴(kuò)大城區(qū)綠地面積,現(xiàn)有一塊長方形綠地,它的短邊長為60m,若將短邊增長到長邊相等(長邊不變),使擴(kuò)大后的棣地的形狀是正方形,則擴(kuò)大后的綠地面積比原來增加1600,設(shè)擴(kuò)大后的正方形綠地邊長為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160010.下列計算正確的是()A.3a2﹣6a2=﹣3B.(﹣2a)?(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a6二、填空題(本大題共6個小題,每小題3分,共18分)11.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.12.如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=a(x+)2+k與y軸的交點(diǎn),點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸,則以AB為邊的正方形ABCD的周長為_____.13.如圖,在圓O中,AB為直徑,AD為弦,過點(diǎn)B的切線與AD的延長線交于點(diǎn)C,AD=DC,則∠C=________度.14.如圖,在△ABC中,∠A=70°,∠B=50°,點(diǎn)D,E分別為AB,AC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若△EFC為直角三角形,則∠BDF的度數(shù)為______.15.已知:如圖,△ABC的面積為12,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),則四邊形BCED的面積為_____.16.在直徑為10m的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示如果油面寬AB=8m,那么油的最大深度是_________.三、解答題(共8題,共72分)17.(8分)計算:+2〡6tan3018.(8分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.19.(8分)如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過和兩點(diǎn),且與軸交于,直線是拋物線的對稱軸,過點(diǎn)的直線與直線相交于點(diǎn),且點(diǎn)在第一象限.(1)求該拋物線的解析式;(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;(3)點(diǎn)在拋物線的對稱軸上,與直線和軸都相切,求點(diǎn)的坐標(biāo).20.(8分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A(2,1).(1)求點(diǎn)B的坐標(biāo);(2)求經(jīng)過A、O、B三點(diǎn)的拋物線的函數(shù)表達(dá)式;(3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.21.(8分)某種蔬菜的銷售單價y1與銷售月份x之間的關(guān)系如圖(1)所示,成本y2與銷售月份之間的關(guān)系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)分別求出y1、y2的函數(shù)關(guān)系式(不寫自變量取值范圍);通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?22.(10分)先化簡,再求值:,其中a是方程a(a+1)=0的解.23.(12分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點(diǎn)A、出水口B和點(diǎn)落水點(diǎn)C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=
,cos37°=
,tan37°=
)
(1)求把手端點(diǎn)A到BD的距離;
(2)求CH的長.
24.解方程(2x+1)2=3(2x+1)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點(diǎn)睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的首先解決問題,屬于中考??碱}型.2、B【解析】
根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質(zhì)即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點(diǎn)睛】此題考查三角形內(nèi)角和,平行線的性質(zhì),解題關(guān)鍵在于利用平行線的性質(zhì)得到角相等3、C【解析】
由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進(jìn)行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當(dāng)t>2時,t-1=6,解得t=7;當(dāng)t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系的內(nèi)容,理解題意是解題關(guān)鍵.4、A【解析】
連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.【詳解】如下圖,連AC,OC,BC,設(shè)CD交AB于H,∵CD垂直平分線段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直徑,∴,∴,∵,∴點(diǎn)F在以AC為直徑的⊙M上運(yùn)動,當(dāng)E從A運(yùn)動到D時,點(diǎn)F從A運(yùn)動到H,連接MH,∵M(jìn)A=MH,∴∴,∵,∴CF掃過的面積為,故選:A.【點(diǎn)睛】本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關(guān)鍵.5、D【解析】
過B點(diǎn)作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.6、D【解析】
由三角形內(nèi)切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應(yīng)數(shù)值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內(nèi)切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點(diǎn)睛】此題主要考查了三角形的內(nèi)切圓與內(nèi)心以及切線的性質(zhì).關(guān)鍵是要知道關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB).7、C【解析】
根據(jù)俯視圖的概念可知,只需找到從上面看所得到的圖形即可.【詳解】解:從上面看易得:有2列小正方形,第1列有2個正方形,第2列有2個正方形,故選C.【點(diǎn)睛】考查下三視圖的概念;主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看所得到的圖形;8、B【解析】
根據(jù)a、b的符號進(jìn)行判斷,兩函數(shù)圖象能共存于同一坐標(biāo)系的即為正確答案.【詳解】分四種情況:①當(dāng)a>0,b>0時,y=ax+b的圖象經(jīng)過第一、二、三象限,y=bx+a的圖象經(jīng)過第一、二、三象限,無選項符合;②當(dāng)a>0,b<0時,y=ax+b的圖象經(jīng)過第一、三、四象限;y=bx+a的圖象經(jīng)過第一、二、四象限,B選項符合;③當(dāng)a<0,b>0時,y=ax+b的圖象經(jīng)過第一、二、四象限;y=bx+a的圖象經(jīng)過第一、三、四象限,B選項符合;④當(dāng)a<0,b<0時,y=ax+b的圖象經(jīng)過第二、三、四象限;y=bx+a的圖象經(jīng)過第二、三、四象限,無選項符合.故選B.【點(diǎn)睛】此題考查一次函數(shù)的圖象,關(guān)鍵是根據(jù)一次函數(shù)y=kx+b的圖象有四種情況:①當(dāng)k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限;②當(dāng)k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;③當(dāng)k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;④當(dāng)k<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限.9、A【解析】試題分析:根據(jù)題意可得擴(kuò)建的部分相當(dāng)于一個長方形,這個長方形的長和寬分別為x米和(x-60)米,根據(jù)長方形的面積計算法則列出方程.考點(diǎn):一元二次方程的應(yīng)用.10、B【解析】
根據(jù)整式的運(yùn)算法則分別計算可得出結(jié)論.【詳解】選項A,由合并同類項法則可得3a2﹣6a2=﹣3a2,不正確;選項B,單項式乘單項式的運(yùn)算可得(﹣2a)?(﹣a)=2a2,正確;選項C,根據(jù)整式的除法可得10a10÷2a2=5a8,不正確;選項D,根據(jù)冪的乘方可得﹣(a3)2=﹣a6,不正確.故答案選B.考點(diǎn):合并同類項;冪的乘方與積的乘方;單項式乘單項式.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】根據(jù)題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.12、1【解析】
根據(jù)題意和二次函數(shù)的性質(zhì)可以求得線段AB的長度,從而可以求得正方形ABCD的周長.【詳解】∵在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=a(x+)2+k與y軸的交點(diǎn),∴點(diǎn)A的橫坐標(biāo)是0,該拋物線的對稱軸為直線x=﹣,∵點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸,∴點(diǎn)B的橫坐標(biāo)是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周長為:3×4=1,故答案為:1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、正方形的性質(zhì),解題的關(guān)鍵是找出所求問題需要的條件.13、1【解析】
利用圓周角定理得到∠ADB=90°,再根據(jù)切線的性質(zhì)得∠ABC=90°,然后根據(jù)等腰三角形的判定方法得到△ABC為等腰直角三角形,從而得到∠C的度數(shù).【詳解】解:∵AB為直徑,∴∠ADB=90°,∵BC為切線,∴AB⊥BC,∴∠ABC=90°,∵AD=CD,∴△ABC為等腰直角三角形,∴∠C=1°.故答案為1.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.也考查了等腰直角三角形的判定與性質(zhì).14、110°或50°.【解析】
由內(nèi)角和定理得出∠C=60°,根據(jù)翻折變換的性質(zhì)知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°兩種情況,先求出∠DFC度數(shù),繼而由∠BDF=∠DFC﹣∠B可得答案.【詳解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性質(zhì)知∠DFE=∠A=70°,分兩種情況討論:①當(dāng)∠EFC=90°時,∠DFC=∠DFE+∠EFC=160°,則∠BDF=∠DFC﹣∠B=110°;②當(dāng)∠FEC=90°時,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;綜上:∠BDF的度數(shù)為110°或50°.故答案為110°或50°.【點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)及三角形內(nèi)角和定理,熟知折疊的性質(zhì)、三角形的內(nèi)角和定理、三角形外角性質(zhì)是解答此題的關(guān)鍵.15、1【解析】【分析】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關(guān)于x的方程,解之可得.【詳解】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,∵點(diǎn)D、E分別是邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點(diǎn)睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質(zhì).16、2m【解析】
本題是已知圓的直徑,弦長求油的最大深度其實(shí)就是弧AB的中點(diǎn)到弦AB的距離,可以轉(zhuǎn)化為求弦心距的問題,利用垂徑定理來解決.【詳解】解:過點(diǎn)O作OM⊥AB交AB與M,交弧AB于點(diǎn)E.連接OA.在Rt△OAM中:OA=5m,AM=12根據(jù)勾股定理可得OM=3m,則油的最大深度ME為5-3=2m.【點(diǎn)睛】圓中的有關(guān)半徑,弦長,弦心距之間的計算一般是通過垂徑定理轉(zhuǎn)化為解直角三角形的問題.三、解答題(共8題,共72分)17、10【解析】
根據(jù)實(shí)數(shù)的性質(zhì)進(jìn)行化簡即可計算.【詳解】原式=9-1+2-+6×=10-=10【點(diǎn)睛】此題主要考查實(shí)數(shù)的計算,解題的關(guān)鍵是熟知實(shí)數(shù)的性質(zhì).18、(1)A種樹每棵2元,B種樹每棵80元;(2)當(dāng)購買A種樹木1棵,B種樹木25棵時,所需費(fèi)用最少,最少為8550元.【解析】
(1)設(shè)A種樹每棵x元,B種樹每棵y元,根據(jù)“購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元”列出方程組并解答;(2)設(shè)購買A種樹木為x棵,則購買B種樹木為(2-x)棵,根據(jù)“購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍”列出不等式并求得x的取值范圍,結(jié)合實(shí)際付款總金額=0.9(A種樹的金額+B種樹的金額)進(jìn)行解答.【詳解】解:(1)設(shè)A種樹木每棵x元,B種樹木每棵y元,根據(jù)題意,得,解得,答:A種樹木每棵2元,B種樹木每棵80元.(2)設(shè)購買A種樹木x棵,則B種樹木(2-x)棵,則x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.設(shè)實(shí)際付款總額是y元,則y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y隨x增大而增大,∴當(dāng)x=1時,y最小為18×1+73=8550(元).答:當(dāng)購買A種樹木1棵,B種樹木25棵時,所需費(fèi)用最少,為8550元.19、(1);(2);(3)或.【解析】
(1)根據(jù)圖象經(jīng)過M(1,0)和N(3,0)兩點(diǎn),且與y軸交于D(0,3),可利用待定系數(shù)法求出二次函數(shù)解析式;
(2)根據(jù)直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,得出AC,BC的長,得出B點(diǎn)的坐標(biāo),即可利用待定系數(shù)法求出一次函數(shù)解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圓的半徑,即可得出P點(diǎn)的坐標(biāo).【詳解】(1)拋物線的圖象經(jīng)過,,,把,,代入得:解得:,拋物線解析式為;(2)拋物線改寫成頂點(diǎn)式為,拋物線對稱軸為直線,∴對稱軸與軸的交點(diǎn)C的坐標(biāo)為,,設(shè)點(diǎn)B的坐標(biāo)為,,則,,∴∴點(diǎn)B的坐標(biāo)為,設(shè)直線解析式為:,把,代入得:,解得:,直線解析式為:.(3)①∵當(dāng)點(diǎn)P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,
設(shè)⊙P與AB相切于點(diǎn)F,與x軸相切于點(diǎn)C,如圖1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴點(diǎn)P的坐標(biāo)為(2,);②設(shè)⊙P與AB相切于點(diǎn)F,與軸相切于點(diǎn)C,如圖2:∴PF⊥AB,PF=PC,
∵AC=3,BC=4,AB=5,∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴點(diǎn)P的坐標(biāo)為(2,-6),綜上所述,與直線和都相切時,或.【點(diǎn)睛】本題考查了二次函數(shù)綜合題,涉及到用待定系數(shù)法求一函數(shù)的解析式、二次函數(shù)的解析式及相似三角形的判定和性質(zhì)、切線的判定和性質(zhì),根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.20、(1)B(-1.2);(2)y=;(3)見解析.【解析】
(1)過A作AC⊥x軸于點(diǎn)C,過B作BD⊥x軸于點(diǎn)D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點(diǎn)坐標(biāo);(2)根據(jù)A、B、O三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點(diǎn)P在線段AO的下方,過P作PE∥y軸交線段OA于點(diǎn)E,可求得直線OA解析式,設(shè)出P點(diǎn)坐標(biāo),則可表示出E點(diǎn)坐標(biāo),可表示出PE的長,進(jìn)一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時P點(diǎn)的坐標(biāo).【詳解】(1)如圖1,過A作AC⊥x軸于點(diǎn)C,過B作BD⊥x軸于點(diǎn)D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點(diǎn),∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點(diǎn)坐標(biāo)代入可得,解得,∴經(jīng)過A、B、O原點(diǎn)的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點(diǎn)P在線段OA的下方,過P作PE∥y軸交AO于點(diǎn)E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點(diǎn)坐標(biāo)為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當(dāng)t=1時,四邊形ABOP的面積最大,此時P點(diǎn)坐標(biāo)為(1,-),綜上可知存在使四邊形ABOP的面積最大的點(diǎn)P,其坐標(biāo)為(1,-).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,主要涉及待定系數(shù)法、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、三角形的面積以及方程思想等知識.在(1)中構(gòu)造三角形全等是解題的關(guān)鍵,在(2)中注意待定系數(shù)法的應(yīng)用,在(3)中用t表示出四邊形ABOP的面積是解題的關(guān)鍵.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度適中.21、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大為.【解析】
(1)觀察圖象找出點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W與x的函數(shù)關(guān)系式,利用配方求出二次函數(shù)的最大值.【詳解】解:(1)設(shè)y1=kx+b,將(3,5)和(6,3)代入得,,解得.∴y1=﹣x+1.設(shè)y2=a(x﹣6)2+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品安全復(fù)習(xí)題(附參考答案)
- 基站施工合同范例
- 2025年白山貨運(yùn)資格證考試題庫
- 別墅裝修裝飾設(shè)計合同范例
- 數(shù)字技術(shù)適老化發(fā)展報告(2024年)
- 2025年江西貨運(yùn)上崗證模擬考試題
- 臺球廳合作合同范例
- 成都租房月租合同范例
- 天府新區(qū)航空旅游職業(yè)學(xué)院《近世代數(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 公益文藝演出聘用合同范例
- 塑料模具肥皂盒設(shè)計說明書
- 最新X公司事業(yè)部建設(shè)規(guī)劃方案
- 十一學(xué)校行動綱要
- 穿越河流工程定向鉆專項施工方案
- 社會主義新農(nóng)村建設(shè)建筑廢料利用探究
- 唯一住房補(bǔ)貼申請書(共2頁)
- 《質(zhì)量守恒定律》評課稿
- 人教版七年級上冊地理《第4章居民與聚落 第3節(jié)人類的聚居地——聚落》課件
- 數(shù)據(jù)中心IDC項目建議書
- 中醫(yī)養(yǎng)生脾胃為先PPT文檔
- 《生產(chǎn)計劃與控制》課程設(shè)計
評論
0/150
提交評論