版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022學(xué)年河北省保定市定州中山中學(xué)高二數(shù)學(xué)理測(cè)試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.若函數(shù)的圖像與函數(shù)的圖像關(guān)于直線對(duì)稱,則(
)A.
B.
C.
D.參考答案:B因?yàn)閮蓚€(gè)函數(shù)和的圖象關(guān)于對(duì)稱,所以函數(shù)與函數(shù)互為反函數(shù),又因?yàn)楹瘮?shù)的反函數(shù)為,即,函數(shù)的圖象向左平移兩個(gè)單位可得,即函數(shù)的解析式為,故選B.
2.2014年巴西世界杯某項(xiàng)目參賽領(lǐng)導(dǎo)小組要從甲、乙、丙、丁、戊五名志愿者中選派四人分別從事翻譯、導(dǎo)游、禮儀、司機(jī)四項(xiàng)不同工作,若其中甲、乙只能從事前三項(xiàng)工作,其余三人均能從事這四項(xiàng)工作,則不同的選派方案共有
(
) A.18種
B.36種
C.48種
D.72種參考答案:D略3.表示甲、乙兩名運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖.則甲得分的中位數(shù)與乙得分的中位數(shù)之和為()A.56分 B.57分 C.58分 D.59分參考答案:B【考點(diǎn)】莖葉圖.【分析】根據(jù)莖葉圖中的數(shù)據(jù),先把甲、乙運(yùn)動(dòng)員得分按從小到大的順序排列,求出它們的中位數(shù),再求和.【解答】解:根據(jù)莖葉圖中的數(shù)據(jù),得;甲運(yùn)動(dòng)員得分按從小到大的順序排列為4,14,14,24,25,31,32,35,36,36,39,45,49,∴它的中位數(shù)是32;乙運(yùn)動(dòng)員得分按從小到大的順序排列為8,12,15,18,23,25,26,32,33,34,41,∴它的中位數(shù)是25;∴32+25=57.故選:B.4.對(duì)于任意實(shí)數(shù)a、b、c、d,命題:①;②;③;④;⑤.其中真命題的個(gè)數(shù)是(
)A、1 B、2C、3D、4參考答案:B5.橢圓C:的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P在C上且直線PA2斜率的取值范圍是[﹣2,﹣1],那么直線PA1斜率的取值范圍是()A. B. C. D.參考答案:B【考點(diǎn)】直線與圓錐曲線的關(guān)系;直線的斜率.【分析】由橢圓C:可知其左頂點(diǎn)A1(﹣2,0),右頂點(diǎn)A2(2,0).設(shè)P(x0,y0)(x0≠±2),代入橢圓方程可得.利用斜率計(jì)算公式可得,再利用已知給出的的范圍即可解出.【解答】解:由橢圓C:可知其左頂點(diǎn)A1(﹣2,0),右頂點(diǎn)A2(2,0).設(shè)P(x0,y0)(x0≠±2),則,得.∵=,=,∴==,∵,∴,解得.故選B.6.設(shè)~N(0,1),且P(<1.623)=p,那么P(-1.623)的值是A
p
B
-p
C
0.5-p
D
p-0.5
參考答案:D7.設(shè)x,y滿足約束條件,則的最小值與最大值的和為(
)A.7 B.8 C.13 D.14參考答案:D可行域如圖所示,當(dāng)動(dòng)直線過(guò)時(shí),;當(dāng)動(dòng)直線過(guò)時(shí),,故的最大值與最小值的和為14,選D.8.已知函數(shù),其導(dǎo)函數(shù)的圖象如下圖,則對(duì)于函數(shù)的描述正確的是A.在上為減函數(shù)
B.在上為減函數(shù)C.在處取得最大值
D.在處取得最小值參考答案:B9.如圖①,一個(gè)圓錐形容器的高為,內(nèi)裝有一定量的水.如果將容器倒置,這時(shí)所形成的圓錐的高恰為(如圖②),則圖①中的水面高度為.A.
B.
C.
D.參考答案:D略10.觀察,則歸納推理可得:若定義在R上的函數(shù)滿足,記為的導(dǎo)函數(shù),則
A.
B.
C.
D.參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.已知?jiǎng)t=
。參考答案:12.已知常數(shù)θ∈(0,),則(tanθ)>(cotθ)x–8不等式的解集是
。參考答案:x≤–2或5≤x<13.已知A(-5,6)關(guān)于直線的對(duì)稱點(diǎn)為B(7,-4),則直線的方程是________.參考答案:14.甲、乙兩名運(yùn)動(dòng)員各自等可能地從紅、白、藍(lán)3種顏色的運(yùn)動(dòng)服種選擇1種,則他們選擇相同顏色運(yùn)動(dòng)服的概率為______
參考答案:15.在下列命題中:①若向量a、b共線,則a、b所在的直線平行;②若a、b所在的直線是異面直線,則向量a、b一定不共面;③若a、b、c三向量?jī)蓛晒裁?,則a、b、c三向量一定也共面;④已知三向量a、b、c,則空間任意一個(gè)向量p總可以唯一表示為p=xa+yb+zc.其中正確命題的個(gè)數(shù)為__________參考答案:0略16.已知拋物線方程為的焦點(diǎn)為F,點(diǎn)P為拋物線C上任意一點(diǎn),若點(diǎn),則的最小值為
參考答案:417.已知x,y滿足約束條件,若z=ax+y的最大值為4,則a=.參考答案:2【考點(diǎn)】簡(jiǎn)單線性規(guī)劃.【專題】計(jì)算題;函數(shù)思想;數(shù)形結(jié)合法;不等式的解法及應(yīng)用.【分析】作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值【解答】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).則A(2,0),B(1,1),若z=ax+y過(guò)A時(shí)取得最大值為4,則2a=4,解得a=2,此時(shí),目標(biāo)函數(shù)為z=2x+y,即y=﹣2x+z,平移直線y=﹣2x+z,當(dāng)直線經(jīng)過(guò)A(2,0)時(shí),截距最大,此時(shí)z最大為4,滿足條件,若z=ax+y過(guò)B時(shí)取得最大值為4,則a+1=4,解得a=3,此時(shí),目標(biāo)函數(shù)為z=3x+y,即y=﹣3x+z,平移直線y=﹣3x+z,當(dāng)直線經(jīng)過(guò)A(2,0)時(shí),截距最大,此時(shí)z最大為6,不滿足條件,故a=2;故答案為:2.【點(diǎn)評(píng)】本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法,確定目標(biāo)函數(shù)的斜率關(guān)系是解決本題的關(guān)鍵.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟18.(13分)為了應(yīng)對(duì)新疆暴力恐怖活動(dòng),重慶市警方從武警訓(xùn)練基地挑選反恐警察,從體能、射擊、反應(yīng)三項(xiàng)指標(biāo)進(jìn)行檢測(cè),如果這三項(xiàng)中至少有兩項(xiàng)通過(guò)即可入選.假定某基地有4名武警戰(zhàn)士(分別記為、、、)擬參加挑選,且每人能通過(guò)體能、射擊、爆破的概率分別為.這三項(xiàng)測(cè)試能否通過(guò)相互之間沒(méi)有影響.(1)求能夠入選的概率; (2)規(guī)定:按入選人數(shù)得訓(xùn)練經(jīng)費(fèi),每入選1人,則相應(yīng)的訓(xùn)練基地得到5000元的訓(xùn)練經(jīng)費(fèi),求該基地得到訓(xùn)練經(jīng)費(fèi)的分布列與數(shù)學(xué)期望(期望精確到個(gè)位).參考答案:(I)設(shè)A通過(guò)體能、射擊、爆破分別記為事件M,N,P則能夠入選包含以下幾個(gè)互斥事件:.(Ⅱ)記表示該訓(xùn)練基地入選人數(shù),則得到的訓(xùn)練經(jīng)費(fèi)為,又可能的取值為0,1,2,3,4.,
,,
,01234P
∴訓(xùn)練經(jīng)費(fèi)的分布列為:5000100001500020000
19.已知函數(shù)f(x)=x2+alnx(a為實(shí)常數(shù))(Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.參考答案:【考點(diǎn)】利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.【分析】(1)當(dāng)a=﹣2時(shí),f′(x)>0在(0,+∞)上恒成立,故函數(shù)在(1,+∞)上是增函數(shù);(2)求導(dǎo)f′(x)=2x+=(x>0),當(dāng)x∈[1,e]時(shí),2x2+a∈[a+2,a+2e2].分①a≥﹣2,②﹣2e2<a<﹣2,③a≤﹣2e2,三種情況得到函數(shù)f(x)在[1,e]上是單調(diào)性,進(jìn)而得到[f(x)]min;(3)由題意可化簡(jiǎn)得到(x∈[1,e]),令(x∈[1,e]),利用導(dǎo)數(shù)判斷其單調(diào)性求出最小值為g(1)=﹣1.【解答】解:(1)當(dāng)a=﹣2時(shí),f(x)=x2﹣2lnx,x∈(0,+∞),則f′(x)=2x﹣=(x>0)由于f′(x)>0在(0,+∞)上恒成立,故函數(shù)在(1,+∞)上是增函數(shù);(2)f′(x)=2x+=(x>0),當(dāng)x∈[1,e]時(shí),2x2+a∈[a+2,a+2e2].①若a≥﹣2,f′(x)在[1,e]上非負(fù)(僅當(dāng)a=﹣2,x=1時(shí),f′(x)=0),故函數(shù)f(x)在[1,e]上是增函數(shù),此時(shí)[f(x)]min=f(1)=1.②若﹣2e2<a<﹣2,當(dāng)x=時(shí),f′(x)=0;當(dāng)1≤x<時(shí),f′(x)<0,此時(shí)f(x)是減函數(shù);當(dāng)<x≤e時(shí),f′(x)>0,此時(shí)f(x)是增函數(shù).故[f(x)]min=f()=ln(﹣)﹣.③若a≤﹣2e2,f'(x)在[1,e]上非正(僅當(dāng)a=﹣2e2,x=e時(shí),f'(x)=0),故函數(shù)f(x)在[1,e]上是減函數(shù),此時(shí)[f(x)]min=f(e)=a+e2.綜上可知,當(dāng)a≥﹣2時(shí),f(x)的最小值為1,相應(yīng)的x值為1;當(dāng)﹣2e2<a<﹣2時(shí),f(x)的最小值為ln(﹣)﹣,相應(yīng)的x值為;當(dāng)a≤﹣2e2時(shí),f(x)的最小值為a+e2,相應(yīng)的x值為e.(3)不等式f(x)≤(a+2)x,可化為a(x﹣lnx)≥x2﹣2x.∵x∈[1,e],∴l(xiāng)nx≤1≤x且等號(hào)不能同時(shí)取,所以lnx<x,即x﹣lnx>0,因而(x∈[1,e])令(x∈[1,e]),則,當(dāng)x∈[1,e]時(shí),x﹣1≥0,lnx≤1,x+2﹣2lnx>0,從而g′(x)≥0(僅當(dāng)x=1時(shí)取等號(hào)),所以g(x)在[1,e]上為增函數(shù),故g(x)的最小值為g(1)=﹣1,所以a的取值范圍是[﹣1,+∞).20.(本小題滿分16分)已知函數(shù),且在處的切線方程為(1)求的解析式;
(2)證明:當(dāng)時(shí),恒有(3)證明:若且則參考答案:解(1),切線斜率,ks5u在處的切線方程為,即
(4分)(2)令
當(dāng)時(shí),;時(shí),故即.(10分)(3)先求在處的切線方程,由(1)知,
略21.如右圖,M(-2,0)和N(2,0)是平面上的兩點(diǎn),動(dòng)點(diǎn)P滿足:
w.w.w.k.s.5.u.c.o.m
(1).求點(diǎn)P的軌跡方程;(2).若點(diǎn)P到點(diǎn)M距離是到點(diǎn)N距離的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第一講《小企業(yè)會(huì)計(jì)制度》培訓(xùn)
- 2024高中地理第四章工業(yè)地域的形成與發(fā)展第1節(jié)工業(yè)的區(qū)位選擇練習(xí)含解析新人教版必修2
- 2024高中生物專題5DNA和蛋白質(zhì)技術(shù)課題2多聚酶鏈?zhǔn)椒磻?yīng)擴(kuò)增DNA片段課堂演練含解析新人教版選修1
- 2024高中語(yǔ)文第三課神奇的漢字第1節(jié)字之初本為畫-漢字的起源練習(xí)含解析新人教版選修語(yǔ)言文字應(yīng)用
- 2024高考地理一輪復(fù)習(xí)第十八單元區(qū)際聯(lián)系與區(qū)域協(xié)調(diào)發(fā)展練習(xí)含解析
- 2024高考化學(xué)二輪復(fù)習(xí)選擇題專項(xiàng)練二含解析
- (4篇)2024大學(xué)社團(tuán)活動(dòng)工作總結(jié)
- 工程質(zhì)量檢測(cè)試驗(yàn)
- 保潔過(guò)程中的環(huán)境保護(hù)控制措施
- 海關(guān)報(bào)關(guān)實(shí)務(wù)4-第三章2知識(shí)課件
- 管理研究方法論for msci.students maxqda12入門指南
- 基于“產(chǎn)教結(jié)合”的電子商務(wù)專業(yè)實(shí)習(xí)實(shí)訓(xùn)教學(xué)評(píng)價(jià)體系
- TSEESA 010-2022 零碳園區(qū)創(chuàng)建與評(píng)價(jià)技術(shù)規(guī)范
- GB/T 3003-2017耐火纖維及制品
- GB/T 19867.5-2008電阻焊焊接工藝規(guī)程
- GB/T 18920-2020城市污水再生利用城市雜用水水質(zhì)
- 2023年市場(chǎng)部主管年終工作總結(jié)及明年工作計(jì)劃
- GB 17267-1998液化石油氣瓶充裝站安全技術(shù)條件
- 上期開特下期必開特規(guī)律
- 國(guó)有資產(chǎn)出租出借審批表(學(xué)校事業(yè)單位臺(tái)賬記錄表)
- 30第七章-農(nóng)村社會(huì)治理課件
評(píng)論
0/150
提交評(píng)論