版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022山西省呂梁市文岳學(xué)校高一數(shù)學(xué)文測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.下列各組函數(shù)中表示同一函數(shù)的是(
)A.與
B.與C.與
D.與參考答案:D在D項(xiàng)中,函數(shù)與的定義域和對于關(guān)系一致,所以是相同函數(shù)。故選D。
2.設(shè)是的相反向量,則下列說法錯(cuò)誤的是(
)A.與一定不相等
B.∥C.與的長度必相等
D.是的相反向量參考答案:A3.如圖所示,向量,A、B、C在一條直線上,且,則(
)A.
B.
C.
D.
參考答案:A略4.設(shè)x、y均為正實(shí)數(shù),且,則xy的最小值為()A.4 B. C.9 D.16參考答案:D【考點(diǎn)】7F:基本不等式.【分析】本題基本不等式中的一個(gè)常見題型,需要去掉分母,再利用基本不等式轉(zhuǎn)化為關(guān)于xy的不等式,解出最小值.【解答】解:由,可化為xy=8+x+y,∵x,y均為正實(shí)數(shù),∴xy=8+x+y(當(dāng)且僅當(dāng)x=y等號成立)即xy﹣2﹣8≥0,可解得≥4,即xy≥16故xy的最小值為16.故應(yīng)選D.【點(diǎn)評】解決本題的關(guān)鍵是先變形,再利用基本不等式來構(gòu)造一個(gè)新的不等式.5.集合P=,集合Q=那么P,Q的關(guān)系是(
)A.
B.
C.
D.參考答案:D略6.設(shè)函數(shù),給出下列四個(gè)命題:①時(shí),是奇函數(shù)
②時(shí),方程只有一個(gè)實(shí)根③的圖象關(guān)于對稱
④方程至多兩個(gè)實(shí)數(shù)根其中正確的命題的個(gè)數(shù)是A.1
B.
2
C.3
D.4參考答案:C7.若奇函數(shù)在上為增函數(shù),且有最小值0,則它在上(
)
A.是減函數(shù),有最小值0
B.是增函數(shù),有最小值0
C.是減函數(shù),有最大值0
D.是增函數(shù),有最大值0參考答案:D略8.如圖所示,A,B是非空集合,定義集合A#B為陰影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},則A#B為
(
)A.{x|0<x<2}
B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}
D.{x|0≤x≤1或x>2}參考答案:D略9.記等差數(shù)列{an}的前n項(xiàng)和為Sn,若,,則(
)A.36 B.72 C.55 D.110參考答案:C【分析】根據(jù)等差數(shù)列前n項(xiàng)和性質(zhì)得,再根據(jù)等差數(shù)列性質(zhì)求.【詳解】因?yàn)?,所以,因?yàn)?,所以,因?yàn)?,所?選C.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和性質(zhì)以及等差數(shù)列性質(zhì),考查基本分析求解能力,屬基礎(chǔ)題.10.若函數(shù),
,的值域
(
)
A.(2,8]
B.[
8]
C.[2,+∞)
D.(
,+∞)參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)的定義域是________________.參考答案:略12.下列說法中正確的有____________.①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.③用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.參考答案:③
略13.經(jīng)過(3,4),且與圓x2+y2=25相切的直線的方程為.參考答案:3x+4y﹣25=0【考點(diǎn)】直線與圓的位置關(guān)系.【分析】由點(diǎn)在圓上,設(shè)過該點(diǎn)與圓相切的直線方程的斜率為k,利用點(diǎn)到直線的距離公式,由直線與圓相切時(shí),圓心到直線的距離等于圓的半徑列出關(guān)于k的方程,求出方程的解得到k的值,由k的值寫出切線方程即可.【解答】解:因?yàn)辄c(diǎn)(3,4)在圓x2+y2=25上,設(shè)切線方程的斜率為k,則切線方程為y﹣4=k(x﹣3),即kx﹣y﹣3k+4=0,則圓心(0,0)到切線的距離為d==5,解得k=﹣,則切線方程為﹣x﹣y++4=0,即3x+4y﹣25=0.故答案為:3x+4y﹣25=0.14.關(guān)于函數(shù)f(x)=4sin(2x+),(x∈R)有下列命題:①y=f(x)是以2π為最小正周期的周期函數(shù);②y=f(x)可改寫為y=4cos(2x-);③y=f(x)的圖象關(guān)于(-,0)對稱;④y=f(x)的圖象關(guān)于直線x=-對稱;其中正確的序號為
。參考答案:②③略15.將函數(shù)的圖象上的所有點(diǎn)向右平移個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變),則所得的圖象的函數(shù)解析式為
.參考答案:y=sin4x【考點(diǎn)】HJ:函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】按照左加右減的原則,求出函數(shù)所有點(diǎn)向右平移個(gè)單位的解析式,然后求出將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋稌r(shí)的解析式即可.【解答】解:將函數(shù)的圖象上的所有點(diǎn)向右平移個(gè)單位,得到函數(shù)=sin2x,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變),則所得的圖象的函數(shù)解析式為y=sin4x.故答案為:y=sin4x.16.已知數(shù)列{an}與均為等差數(shù)列,且,則_________.參考答案:.分析:先設(shè),再通過分析為等差數(shù)列得到d=2,最后求出找到答案.詳解:設(shè),所以,由于為等差數(shù)列,所以其通項(xiàng)是一個(gè)關(guān)于n的一次函數(shù),所以所以所以故答案為.點(diǎn)睛:本題的關(guān)鍵是對數(shù)列與均為等差數(shù)列的轉(zhuǎn)化,這里利用到了等差數(shù)列的一個(gè)性質(zhì),等差數(shù)列的通項(xiàng)是一個(gè)關(guān)于n的一次函數(shù),根據(jù)這個(gè)性質(zhì)得到d的值,后面
就迎刃而解了.17.求函數(shù)y=x﹣的值域?yàn)椋畢⒖即鸢福海ī仭蓿琞【考點(diǎn)】函數(shù)的值域.【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】求出原函數(shù)的定義域,然后利用函數(shù)在定義域內(nèi)為增函數(shù)求得函數(shù)的值域.【解答】解:由1﹣2x≥0,得,∵為定義域上的減函數(shù),∴y=x﹣在(﹣∞,]上為增函數(shù),則函數(shù)y=x﹣的最大值為.∴函數(shù)y=x﹣的值域?yàn)椋ī仭?,].故答案為:(﹣∞,].【點(diǎn)評】本題考查函數(shù)的值域的求法,訓(xùn)練了利用函數(shù)的單調(diào)性求函數(shù)值域,是基礎(chǔ)題.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知向量,,向量與b夾角為θ,(1)求cosθ;(2)求在的方向上的投影.參考答案:【考點(diǎn)】平面向量數(shù)量積的運(yùn)算.【分析】(1)利用向量的數(shù)量積求解向量的夾角即可.(2)利用向量的數(shù)量積求解在的方向上的投影.【解答】解:(1)向量,,向量與b夾角為θ,cosθ===;(2)b在a的方向上的投影為:||cosθ=2×=.19.已知等比數(shù)列{an}的公比是的等差中項(xiàng),數(shù)列的前n項(xiàng)和為.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{bn}的前n項(xiàng)和Tn.參考答案:(1),;(2).【分析】(1)先由題意,列出方程組,求出首項(xiàng)與公比,即可得出通項(xiàng)公式;(2)根據(jù)題意,求出,再由(1)的結(jié)果,得到,利用錯(cuò)位相減法,即可求出結(jié)果.【詳解】(1)因?yàn)榈缺葦?shù)列的公比,,是的等差中項(xiàng),所以,即,解得,因此,;(2)因?yàn)閿?shù)列的前項(xiàng)和為,所以,()又當(dāng)也滿足上式,所以,;由(1),;所以其前項(xiàng)和①因此②①式減去②式可得:,因此.【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合應(yīng)用,以及錯(cuò)位相減法求數(shù)列的和,熟記等差數(shù)列與等比數(shù)列的通項(xiàng)公式以及求和公式即可,屬于??碱}型.20.(本小題滿分12分)若二次函數(shù)滿足,且。(1)求的解析式;(2)若在區(qū)間上,不等式恒成立,求實(shí)數(shù)的取值范圍。參考答案:(1)有題可知:,解得:由。可知:化簡得:
所以:。∴(2)不等式可化簡為
即:設(shè),則其對稱軸為,∴在[-1,1]上是單調(diào)遞
減函數(shù).因此只需的最小值大于零即可,∴代入得:
解得:m—1所以實(shí)數(shù)的取值范圍是:(-∞,—1)21.已知y=x+.(1)已知x>0,求y的最小值;(2)已知x<0,求y的最大值.參考答案:解:(1)因?yàn)閤>0,所以x+≥2=2,當(dāng)且僅當(dāng)x=,即x=1時(shí)等號成立.所以y的最小值為2.(2)因?yàn)閤<0,所以-x>0.所以f(x)==-2,當(dāng)且僅當(dāng)-x=,即x=-1時(shí)等號成立.所以y的最大值為-2.
22.在如圖所示的直角坐標(biāo)系xOy中,點(diǎn)A,B是單位圓上的點(diǎn),且A(1,0),∠AOB=.現(xiàn)有一動(dòng)點(diǎn)C在單位圓的劣弧上運(yùn)動(dòng),設(shè)∠AOC=α.(1)若tanα=,求?的值;(2)若=x+y,其中x,y∈R,求x+y的最大值.參考答案:【考點(diǎn)】9H:平面向量的基本定理及其意義.【分析】(1)由tanα=,求出cosα、sinα的值,計(jì)算?的值即可;(2)根據(jù)=x+y,其中x,y∈R,列出方程,求出x、y的表達(dá)式,再求x+y的最大值即可.【解答】解:(1)∵tanα=,∴3sinα=c
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備租賃合同:考古挖掘
- 財(cái)務(wù)管理工具與技能培訓(xùn)管理辦法
- 2024年重組家庭共有財(cái)產(chǎn)處理離婚協(xié)議3篇
- 自動(dòng)離職員工交接指南
- 橋梁弱電工程承包合同樣本
- 生產(chǎn)能力評估與改進(jìn)
- 2025年度企業(yè)人才引進(jìn)合同主體變更三方協(xié)議3篇
- 游戲設(shè)備租賃合同自行操作手冊
- 長期倉儲租賃合同樣本
- 合同負(fù)債在施工企業(yè)中的應(yīng)對策略
- 重慶市安全員A證考試題庫附答案(推薦)
- 小學(xué)中低年級學(xué)生音樂節(jié)奏感的培養(yǎng)策略研究 論文
- 小學(xué)六年級數(shù)學(xué)計(jì)算題100道(含答案)
- 一年級數(shù)學(xué)上冊《寒假作業(yè)》30套
- 沈陽來金汽車零部件股份有限公司改擴(kuò)建項(xiàng)目環(huán)評報(bào)告
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院綜合考核基衛(wèi)部分評分表
- 江蘇省2023年生物小高考試題含答案解析
- 2021年1月北京朝陽初二(上)期末歷史試卷及答案
- 嶺南版六年級上冊美術(shù)18課考試復(fù)習(xí)資料
- GB/T 12237-2007石油、石化及相關(guān)工業(yè)用的鋼制球閥
- 痛風(fēng)的診斷及中西醫(yī)治療課件
評論
0/150
提交評論