版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正項(xiàng)等比數(shù)列中,存在兩項(xiàng),使得,,則的最小值是()A. B. C. D.2.已知函,,則的最小值為()A. B.1 C.0 D.3.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.4.已知是定義是上的奇函數(shù),滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是()A.3 B.5 C.7 D.95.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.07.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.8.不等式的解集記為,有下面四個(gè)命題:;;;.其中的真命題是()A. B. C. D.9.已知函數(shù),方程有四個(gè)不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個(gè)零點(diǎn)”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對(duì)稱(chēng) B.關(guān)于點(diǎn)對(duì)稱(chēng)C.周期為 D.在上是增函數(shù)11.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),的最大值是()A.8 B.9 C.10 D.1112.年某省將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒(méi)有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與拋物線交于兩點(diǎn),若,則弦的中點(diǎn)到直線的距離等于________.14.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.15.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.16.《九章算術(shù)》卷5《商功》記載一個(gè)問(wèn)題“今有圓堡瑽,周四丈八尺,高一丈一尺.問(wèn)積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說(shuō)的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說(shuō):圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),則由此可推得圓周率的取值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).18.(12分)隨著現(xiàn)代社會(huì)的發(fā)展,我國(guó)對(duì)于環(huán)境保護(hù)越來(lái)越重視,企業(yè)的環(huán)保意識(shí)也越來(lái)越強(qiáng).現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測(cè)系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用預(yù)算定為1200萬(wàn)元,日常全天候開(kāi)啟3套環(huán)境監(jiān)測(cè)系統(tǒng),若至少有2套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即同時(shí)啟動(dòng)另外2套系統(tǒng)進(jìn)行1小時(shí)的監(jiān)測(cè),且后啟動(dòng)的這2套監(jiān)測(cè)系統(tǒng)中只要有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個(gè)時(shí)間段(以1小時(shí)為計(jì)量單位)被每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)的概率均為,且各個(gè)時(shí)間段每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)情況相互獨(dú)立.(1)當(dāng)時(shí),求某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測(cè)系統(tǒng)運(yùn)行成本為300元/小時(shí)(不啟動(dòng)則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測(cè)系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要100萬(wàn)元.現(xiàn)以此方案實(shí)施,問(wèn)該企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用是否會(huì)超過(guò)預(yù)算(全年按9000小時(shí)計(jì)算)?并說(shuō)明理由.19.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.20.(12分)如圖,已知拋物線:與圓:()相交于,,,四個(gè)點(diǎn),(1)求的取值范圍;(2)設(shè)四邊形的面積為,當(dāng)最大時(shí),求直線與直線的交點(diǎn)的坐標(biāo).21.(12分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹(shù)或者木棉樹(shù),且種植每種樹(shù)木的概率均為.(1)現(xiàn)征求兩市居民的種植意見(jiàn),看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹(shù)300200喜歡木棉樹(shù)250250是否有的把握認(rèn)為喜歡樹(shù)木的種類(lèi)與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹(shù),求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹(shù)的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由已知求出等比數(shù)列的公比,進(jìn)而求出,嘗試用基本不等式,但取不到等號(hào),所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),,所以最小值為.故選:C.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式基本量的計(jì)算及最小值,屬于基礎(chǔ)題.2.B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.3.B【解析】
每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通過(guò)數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng).4.D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當(dāng)時(shí),,
令,則,解得或1,
又∵函數(shù)是定義域?yàn)榈钠婧瘮?shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個(gè),
故選D.【點(diǎn)睛】本題考查根的存在性及根的個(gè)數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.5.B【解析】
構(gòu)造長(zhǎng)方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個(gè)面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷.【詳解】如圖,取長(zhǎng)方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點(diǎn)睛】本題考點(diǎn)有兩個(gè):①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n??jī)煞矫孢M(jìn)行判斷;②是空間的垂直關(guān)系,一般利用長(zhǎng)方體為載體進(jìn)行分析.6.B【解析】
根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.7.B【解析】
由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長(zhǎng)為正方體挖去一個(gè)以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點(diǎn)睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治觯瑥娜晥D中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個(gè)面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺(tái)的側(cè)面是曲面,計(jì)算側(cè)面積時(shí)需要將這個(gè)曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和.8.A【解析】
作出不等式組表示的可行域,然后對(duì)四個(gè)選項(xiàng)一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時(shí),,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點(diǎn)睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.9.A【解析】
作出函數(shù)的圖象,得到,把函數(shù)有零點(diǎn)轉(zhuǎn)化為與在(2,4]上有交點(diǎn),利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個(gè)零點(diǎn),即有兩個(gè)不同的根,也就是與在上有2個(gè)交點(diǎn),則的最小值為;設(shè)過(guò)原點(diǎn)的直線與的切點(diǎn)為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個(gè)零點(diǎn)”是“”的充分不必要條件,故選A.【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,試題有一定的綜合性,屬于中檔題.10.D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對(duì)稱(chēng);當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對(duì)稱(chēng);f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).11.B【解析】
根據(jù)題意計(jì)算,,,解不等式得到答案.【詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時(shí),的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.12.B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知可知直線過(guò)拋物線的焦點(diǎn),求出弦的中點(diǎn)到拋物線準(zhǔn)線的距離,進(jìn)一步得到弦的中點(diǎn)到直線的距離.【詳解】解:如圖,直線過(guò)定點(diǎn),,而拋物線的焦點(diǎn)為,,弦的中點(diǎn)到準(zhǔn)線的距離為,則弦的中點(diǎn)到直線的距離等于.故答案為:.【點(diǎn)睛】本題考查拋物線的簡(jiǎn)單性質(zhì),考查直線與拋物線位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.14.【解析】
依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)?,所以A、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對(duì)稱(chēng),所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問(wèn)題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.15.1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤(rùn)為元
則根據(jù)題意可得目標(biāo)函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,
由圖象知當(dāng)直線經(jīng)過(guò)時(shí),目標(biāo)函數(shù)的截距最大,此時(shí)最大,
由可得,即此時(shí)最大,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤(rùn),最大利潤(rùn)為1.【點(diǎn)睛】本題考查用線性規(guī)劃知識(shí)求利潤(rùn)的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識(shí)進(jìn)行求解是解決本題的關(guān)鍵.16.3【解析】
根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),可得,進(jìn)而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點(diǎn)睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2);(3).【解析】
(1)利用導(dǎo)數(shù)的幾何意義計(jì)算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導(dǎo)可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【詳解】(1)因?yàn)椋?,?dāng)時(shí),,所以切線方程為,即.(2),.因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以,且恒成立,即,所以,即,又,故,所以實(shí)數(shù)的取值范圍是.(3).因?yàn)楹瘮?shù)在區(qū)間上有兩個(gè)極值點(diǎn),所以方程在上有兩不等實(shí)根,即.令,則,由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,解得且.又由,所以,且當(dāng)和時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,是極值點(diǎn),此時(shí)令,則,所以在上單調(diào)遞減,所以.因?yàn)楹愠闪?,所?若,取,則,所以.令,則,.當(dāng)時(shí),;當(dāng)時(shí),.所以,所以在上單調(diào)遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值點(diǎn),不等式恒成立等知識(shí),是一道難題.18.(1);(2)不會(huì)超過(guò)預(yù)算,理由見(jiàn)解析【解析】
(1)求出某個(gè)時(shí)間段在開(kāi)啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個(gè)時(shí)間段在需要開(kāi)啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測(cè)系統(tǒng)的運(yùn)行費(fèi)用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對(duì)其求導(dǎo),研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結(jié)論.【詳解】(1)某個(gè)時(shí)間段在開(kāi)啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個(gè)時(shí)間段在需要開(kāi)啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率為.(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測(cè)系統(tǒng)的運(yùn)行費(fèi)用為元,則的可能取值為900,1500.,令,則當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,在上單調(diào)遞減,的最大值為,實(shí)施此方案,最高費(fèi)用為(萬(wàn)元),,故不會(huì)超過(guò)預(yù)算.【點(diǎn)睛】本題考查獨(dú)立重復(fù)事件發(fā)生的概率、期望,及運(yùn)用求導(dǎo)函數(shù)研究期望的最值,由根據(jù)期望值確定方案,此類(lèi)題目解決的關(guān)鍵在于將生活中的量轉(zhuǎn)化為數(shù)學(xué)中和量,屬于中檔題.19.(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)求導(dǎo)得,分類(lèi)討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時(shí),,此時(shí)在上遞增;當(dāng)時(shí),由,解得,若,則,若,,此時(shí)在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設(shè),則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類(lèi)討論和構(gòu)造新函數(shù),通過(guò)導(dǎo)數(shù)證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.20.(1)(2)點(diǎn)的坐標(biāo)為【解析】
將拋物線方程與圓方程聯(lián)立,消去得到關(guān)于的一元二次方程,拋物線與圓有四個(gè)交點(diǎn)需滿足關(guān)于的一元二次方程在上有兩個(gè)不等的實(shí)數(shù)根,根據(jù)二次函數(shù)的有關(guān)性質(zhì)即可得到關(guān)于的不等式組,解不等式即可.不妨設(shè)拋物線與圓的四個(gè)交點(diǎn)坐標(biāo)為,,,,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點(diǎn)坐標(biāo),再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達(dá)式,令,由及知,對(duì)關(guān)于的面積函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性和最值,即可求出四邊形的面積取得最大值時(shí)的值,進(jìn)而求出點(diǎn)坐標(biāo).【詳解】(1)聯(lián)立拋物線與圓的方程消去,得.由題意可知在上有兩個(gè)不等的實(shí)數(shù)根.所以解得,所以的取值范圍為.(2)根據(jù)(1)可設(shè)方程的兩個(gè)根分別為,(),則,,,,且,,所以直線、的方程分別為,,聯(lián)立方程可得,點(diǎn)的坐標(biāo)為,因?yàn)樗倪呅螢榈妊菪?所以,令,則,所以,因?yàn)?所以當(dāng)時(shí),;當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,即當(dāng)時(shí),四邊形的面積取得最大值,因?yàn)?點(diǎn)的坐標(biāo)為,所以當(dāng)四邊形的面積取得最大值時(shí),點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州醫(yī)科大學(xué)《財(cái)政與金融》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025吉林省安全員-B證考試題庫(kù)附答案
- 2025廣東建筑安全員-A證考試題庫(kù)及答案
- 《STP汽車(chē)戰(zhàn)略分析》課件
- 《康復(fù)護(hù)理新思維》課件
- 單位人力資源管理制度品讀大全十篇
- 單位人力資源管理制度集粹合集十篇
- 內(nèi)蒙古呼倫貝爾市阿榮旗2024-2025學(xué)年七年級(jí)上學(xué)期1月期末道德與法治試卷(含答案)
- 《ho中國(guó)案例分析》課件
- 單位管理制度展示選集【職員管理篇】十篇
- 熔鑄生產(chǎn)安全操作規(guī)程標(biāo)準(zhǔn)版本
- 行測(cè)答題卡模板
- 遼寧盤(pán)錦浩業(yè)化工“1.15”泄漏爆炸著火事故警示教育
- 供應(yīng)鏈案例亞馬遜歐洲公司分銷(xiāo)戰(zhàn)略課件
- 石化行業(yè)八大高風(fēng)險(xiǎn)作業(yè)安全規(guī)范培訓(xùn)課件
- 村老支書(shū)追悼詞
- DB3302T 1131-2022企業(yè)法律顧問(wèn)服務(wù)基本規(guī)范
- 2022年自愿性認(rèn)證活動(dòng)獲證組織現(xiàn)場(chǎng)監(jiān)督檢查表、確認(rèn)書(shū)
- 中南大學(xué)年《高等數(shù)學(xué)上》期末考試試題及答案
- 小龍蝦高密度養(yǎng)殖試驗(yàn)基地建設(shè)項(xiàng)目可行性研究報(bào)告
- 《橋梁工程計(jì)算書(shū)》word版
評(píng)論
0/150
提交評(píng)論