版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
蘭州交通大學(xué)畢業(yè)設(shè)計(論文)蘭州交通大學(xué)畢業(yè)設(shè)計(論文)任務(wù)書課題北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計姓名宿穩(wěn)平專業(yè)土木工程班級土木088班設(shè)計任務(wù)1.根據(jù)所給資料,根據(jù)工程地質(zhì)與水文地質(zhì)條件,參照區(qū)間隧道設(shè)計規(guī)范和標(biāo)準(zhǔn),進(jìn)行線路平縱斷面設(shè)計、結(jié)構(gòu)設(shè)計(包括主體結(jié)構(gòu)設(shè)計、附屬結(jié)構(gòu)設(shè)計和臨時結(jié)構(gòu)設(shè)計。)并繪制區(qū)間隧道標(biāo)準(zhǔn)斷面圖、區(qū)間隧道標(biāo)準(zhǔn)斷面配筋圖、區(qū)間隧道縱斷面圖、區(qū)間隧道結(jié)構(gòu)平面圖、風(fēng)道結(jié)構(gòu)設(shè)計圖。2.對區(qū)間隧道主體結(jié)構(gòu)設(shè)計中結(jié)構(gòu)型式及結(jié)構(gòu)支護(hù)參數(shù)及尺寸進(jìn)行計算、結(jié)構(gòu)計算包括結(jié)構(gòu)二維計算。對荷載與荷載組合進(jìn)行計算。3.進(jìn)行施工組織設(shè)計。施工單位的施工組織設(shè)計(實施性施工組織設(shè)計)應(yīng)包括以下內(nèi)容:隧道工程說明書,工地詳細(xì)平面布置圖,工程預(yù)計進(jìn)度表,各工程項目分月完成工作量表,各項資源計算表及說明,組織機(jī)構(gòu)設(shè)置,勞動力分月表,各項材料分月需要量表,施工機(jī)具需要量及使用起訖日期表,材料及備品需要量表,技術(shù)復(fù)雜工序及新施工方法的技術(shù)操作規(guī)定,保證質(zhì)量及安全的技術(shù)組織措施等。4.編寫設(shè)計說明書。應(yīng)包括自然條件,工程概況,設(shè)計依據(jù)及各項技參數(shù)的選定和設(shè)計內(nèi)容等5.分別用中英文撰寫畢業(yè)設(shè)計摘要(500字左右),并用計算機(jī)打印。設(shè)計要求1.根據(jù)所給資料,參照《地鐵設(shè)計規(guī)范》<GB50157-3003>和《地下鐵道工程施工及驗收規(guī)范》<GB50299-1999>,《混凝土結(jié)構(gòu)設(shè)計規(guī)范》<GB50010-2002>,設(shè)計并用CAD制圖軟件繪制隧道縱橫斷面圖(1:1000)。2.進(jìn)行襯砌結(jié)構(gòu)的設(shè)計和計算。參照標(biāo)準(zhǔn)圖進(jìn)行隧道襯砌結(jié)構(gòu)設(shè)計,利用給定或自編的程序計算襯砌結(jié)構(gòu)的內(nèi)力并檢算其抗壓和抗拉強(qiáng)度。3.進(jìn)行施工組織設(shè)計。4.編寫設(shè)計說明書。5.編寫英文的摘要。指導(dǎo)教師簽字系主任簽字主管院長簽章蘭州交通大學(xué)畢業(yè)設(shè)計(論文)開題報告表課題名稱北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計課題來源工程實際課題類型AY導(dǎo)師學(xué)生姓名學(xué)號專業(yè)土木工程一、調(diào)研資料的準(zhǔn)備北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)處的地質(zhì)資料和地形圖,《地鐵設(shè)計規(guī)范》<GB50157-3003>和《地下鐵道工程施工及驗收規(guī)范》<GB50299-1999>,《混凝土結(jié)構(gòu)設(shè)計規(guī)范》<GB50010-2002>,和部分外文書籍。畢業(yè)設(shè)計目的設(shè)北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道),其結(jié)構(gòu)的設(shè)計使用年年限為100年,按荷載基本效應(yīng)組合計算,襯砌結(jié)構(gòu)的抗震作用符合8度抗震烈度,地下工程的主要部件的防火等級為一級。在戰(zhàn)時應(yīng)能滿足人防工程的要求。三、思路與預(yù)期成果根據(jù)相關(guān)的規(guī)范《地鐵隧道設(shè)計規(guī)范》和設(shè)計要求進(jìn)行設(shè)計,并能夠按期的完成畢業(yè)設(shè)計,基本掌握地鐵隧道的設(shè)計。尤其對北京地區(qū)地鐵隧道從設(shè)計到施工獲得深入了解,為以后工作打下基礎(chǔ),得到實踐經(jīng)驗。四、階段任務(wù)的完成內(nèi)容及時間安排第5周:查閱外文資料,并以其進(jìn)行翻譯和學(xué)習(xí)。第5-6周:熟悉圖紙和相應(yīng)的設(shè)計要求,仔細(xì)研究地質(zhì)條件,明確基本的設(shè)計方向。第8周:確定開挖斷面面積及結(jié)構(gòu)斷面形式。第9周:和同組同學(xué)進(jìn)行溝通確定相鄰斷的銜接問題。第10-11周:襯砌結(jié)構(gòu)設(shè)計及檢算。第12周:繪制襯砌結(jié)構(gòu)橫斷面圖。第13周:整理以前的計算資料。第14周:熟悉隧道施工組織設(shè)計內(nèi)容。第15周:施工方案的選擇,組織機(jī)構(gòu)設(shè)置和施工隊伍的分工,并交開題報告。第16周:臨時工程和總體工程進(jìn)度安排,監(jiān)控量測和施工控制測量。第17周:整理資料,準(zhǔn)備答辯。(可另加附頁)指導(dǎo)教師意見簽名:年月日課題類型和性質(zhì):(1)A—工程設(shè)計;B—技術(shù)開發(fā);C—軟件工程;D—理論研究;(2)X—真實課題;Y—模擬課題;Z—虛擬課題(1)、(2)均要填,如AY、BX等。蘭州交通大學(xué)畢業(yè)設(shè)計(論文)學(xué)生自查表(中期教學(xué)檢查用)學(xué)生姓名專業(yè)土木工程班級指導(dǎo)教師姓名職稱講師課題名稱北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計個人精力實際投入日平均工作時間6小時周平均工作時間42小時迄今缺席天數(shù)0出勤率%100%指導(dǎo)教師每周指導(dǎo)次數(shù)3次每周指導(dǎo)時間(小時)9小時備注畢業(yè)設(shè)計(論文)工作進(jìn)度(完成)內(nèi)容及比重已完成主要內(nèi)容%待完成主要內(nèi)容%任務(wù)計劃書,開題報告;英文資料的翻譯;地形平面圖的繪制,地質(zhì)剖面圖,限界的確定;迂回風(fēng)道結(jié)構(gòu)圖的繪制,區(qū)間隧道橫斷面圖的繪制;隧道結(jié)構(gòu)荷載的確定以及結(jié)構(gòu)內(nèi)力計算。55迂回風(fēng)道襯砌的內(nèi)力計算與檢算;區(qū)間隧道襯砌的檢算與配筋;施工組織方案的確定;整理以前的計算資料與圖紙;并撰寫設(shè)計說明書。45存在問題在進(jìn)行結(jié)構(gòu)內(nèi)力計算時,運用軟件sap2000不太熟練,甚至不足;由于對盾構(gòu)法施工不太熟悉,在設(shè)計中有諸多不合理之處;由于區(qū)間隧道結(jié)構(gòu)底板下有層間水,是否考慮抗浮驗算存在問題;在施工組織中需多查閱資料,以完善和補(bǔ)充。指導(dǎo)教師簽字:年月日摘要本畢業(yè)設(shè)計主要包括兩個部分,第一部分是北京某區(qū)間(K13+510.000—K13+585.600)隧道結(jié)構(gòu)設(shè)計;第二部分是北京某區(qū)間(K13+510.000—K13+585.600)隧道施工組織設(shè)計;在第一部分區(qū)間隧道結(jié)構(gòu)設(shè)計中,根據(jù)工程地質(zhì)與水文地質(zhì)條件,參照區(qū)間隧道設(shè)計規(guī)范和標(biāo)準(zhǔn),對區(qū)間隧道進(jìn)行結(jié)構(gòu)設(shè)計(包括主體結(jié)構(gòu)設(shè)計、附屬結(jié)構(gòu)設(shè)計),并繪制區(qū)間隧道橫斷面圖、區(qū)間隧道縱斷面圖、區(qū)間隧道結(jié)構(gòu)平面圖、風(fēng)道結(jié)構(gòu)設(shè)計圖。通過施工方案的比選,確定盾構(gòu)法施工,隧道襯砌結(jié)構(gòu)平板型鋼筋混泥土管片,利用fortran程序進(jìn)行襯砌內(nèi)力計算與檢算,并對其進(jìn)行相應(yīng)的強(qiáng)度和抗浮驗算。第二部分是區(qū)間隧道施工組織設(shè)計,根據(jù)隧道施工方法和隧道周邊的環(huán)境情況,對施工前準(zhǔn)備工作,施工場地布置,隧道開挖與襯砌結(jié)構(gòu)施工等進(jìn)行設(shè)計,并編制了工程進(jìn)度計劃,編寫了相應(yīng)的質(zhì)量、安全、環(huán)境保護(hù)等措施。關(guān)鍵詞:盾構(gòu);結(jié)構(gòu)設(shè)計;內(nèi)力計算;檢算;施工組織 ABSTRACTThedesignmainlyincludestwoparts.Thefirstpartisthetunnelstructuredesignofarange(theK13510.000-theK13585.600);Thesecondpartisarange(theK13510.000-theK13585.600)tunnelconstructiondesign.Inthefirstpartofthesectiontunnelsstructuraldesign,engineeringgeologicalandhydrogeologicalconditions,thereferenceintervaltunneldesignnormsandstandards,structuraldesign(includingthemainstructureofthedesignoftherunningtunnels,subsidiarystructuraldesign),anddrawthecross-sectionaldiagramoftherunningtunnels,therangeoftunnellongitudinalsectionstructureplanofrunningtunnels,ductstructuredesign.Comparisonandselectionoftheconstructionprogramtodeterminetheshieldconstruction,thestructureofflatreinforcedconcretetunnelliningsegments,fortranprogramliningcalculationandCalculation,andthecorrespondingstrengthandanti-floatingchecking.
Thesecondpartisthetunnelsectionconstructionarrangementdesign.Accordingtothetunnelconstructionmethodsandtheenvironmentaround,thepreparationbeforetheconstruction,constructionsitelayout,tunnelexcavationandliningconstructionisdesigned.Theprojectschedule,thequality,thesafetyandtheenvironmentprotectionaremade.Keywords:shield;structuraldesign;internalforcecalculation;checkingcalculation;constructionorganizations蘭州交通大學(xué)畢業(yè)設(shè)計(論文)1目錄1. 緒論 ⑤建立規(guī)范統(tǒng)一的測量記錄手薄,認(rèn)真填寫測量記錄。6.8.3消防安全措施(1)消防器材的放置。場地上重要的機(jī)械設(shè)備、油庫、辦公室、更衣室、倉庫等均設(shè)置消防器材。(2)站臺層和站廳在顯眼處也設(shè)置消防器材。隧道內(nèi)每隔50m設(shè)置一個滅火器,盾構(gòu)頭部設(shè)置一組滅火器。(3)隧道內(nèi)嚴(yán)禁吸煙。在井下合理位置布置一吸煙點,并配備滅火器材。結(jié)論本次設(shè)計中主要是北京某地鐵線區(qū)間(K13+510.000-K13+585.600)隧道(含區(qū)間迂回風(fēng)道)設(shè)計。包括區(qū)間隧道和迂回風(fēng)道的平縱斷面設(shè)計、襯砌內(nèi)力的計算與檢算以及施工組織設(shè)計兩部分內(nèi)容。(1)在結(jié)構(gòu)設(shè)計過程中,綜合地質(zhì)情況、施工方法、以及車輛類型(A型車)決定隧道限界,斷面形式,最終確定區(qū)間隧道為圓形結(jié)構(gòu),迂回風(fēng)道為直墻圓拱結(jié)構(gòu)形式。(2)在計算結(jié)構(gòu)襯砌內(nèi)力的計算與檢算過程中,運用fortran程序和Excel計算,通過檢算,管片能夠滿足強(qiáng)度要求。(3)對結(jié)構(gòu)進(jìn)行抗浮驗算,能夠滿足要求,并進(jìn)行了管片斷面設(shè)計。(4)在施工組織設(shè)計中,全面考慮施工高效、科學(xué)、安全的原則,結(jié)合盾構(gòu)施工的特點,詳細(xì)的進(jìn)行設(shè)計,能夠滿足施工要求。(5)同時在斷面設(shè)計中用CAD繪制區(qū)間隧道的平面圖、縱斷面圖、迂回風(fēng)道橫斷面圖。在設(shè)計過程中,大量地用運了EXCEL、Word、AutoCAD等軟件。同時,設(shè)計嚴(yán)格依據(jù)《地鐵設(shè)計規(guī)范》和其他規(guī)范進(jìn)行。致謝畢業(yè)設(shè)計是對大學(xué)四年的的學(xué)業(yè)成果的一次檢閱,同時又是從面向社會、面向基層、面向工程出發(fā),其目的是使學(xué)生在學(xué)完培養(yǎng)計劃所規(guī)定的基礎(chǔ)課、技術(shù)專業(yè)課及各類必修和選修專業(yè)課之后,通過這次畢業(yè)設(shè)計,在培養(yǎng)學(xué)生從事科技工作正確思想方法的同時,培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新、實事求是、用實踐來檢驗理論,全方位地考慮問題等科學(xué)技術(shù)人員應(yīng)具有的素質(zhì)。通過設(shè)計,我深刻地感受到理論知識與工程實踐相結(jié)合的重要性,從設(shè)計中,我全面地鍛煉了自己綜合運用知識以及捕捉信息的能力,而且我也深深地發(fā)現(xiàn)自己在學(xué)習(xí)過程中的欠缺和不足,基礎(chǔ)知識不夠扎實。完成這次畢業(yè)設(shè)計后,我對今后工作和學(xué)習(xí)充滿信心,對未來充滿必勝的信念!經(jīng)過了近三個月的努力,畢業(yè)設(shè)計終于完成了。隨著大學(xué)四年最后一項學(xué)習(xí)任務(wù)的完成,也標(biāo)志著我在大學(xué)的學(xué)習(xí)、生活將告以段落。四年以來,老師的悉心教導(dǎo)、同學(xué)的熱情幫助,讓我學(xué)到了許多知識,同時也讓我學(xué)會了做人的道理,這將是我一生最大的財富。而本次畢業(yè)設(shè)計是對我大學(xué)四年學(xué)習(xí)成果的一次綜合檢驗,也是對我四年所學(xué)的專業(yè)知識的進(jìn)一步強(qiáng)化和提高。在該設(shè)計的構(gòu)思、設(shè)計以及定稿過程中,我得到了陳志敏老師耐心、細(xì)致的指導(dǎo)。陳老師雖然教學(xué)任務(wù)和工程任務(wù)都比較重,但是他總是盡他所能的幫助我們,并為我們提供必要的參考資料以及很多的經(jīng)驗指導(dǎo)。由于我們所學(xué)的知識與完成設(shè)計所需要的知識存在一定斷層,陳老師不辭辛勞的為我們補(bǔ)課。在此,我對陳老師的悉心教導(dǎo)表示誠摯的感謝!此外,在做設(shè)計的過程中,我的同學(xué)也給予了我很多幫助,在此也表示感謝。宿穩(wěn)平2012年6月7日參考文獻(xiàn)[1]張一寧.地鐵旁通道和凍結(jié)法施工風(fēng)險分析與建議[J].城市道橋與防洪,2010[2]劉志強(qiáng).隧道工程[M].徐州:中國礦業(yè)大學(xué)出版社,2002[3]高少強(qiáng).隋修志.隧道工程[M].北京:中國鐵道出版社,2003[4]朱合華.地下建筑結(jié)構(gòu)[M].北京:中國建筑工業(yè)出版社,2005[5]夏軍武.賈福萍.結(jié)構(gòu)設(shè)計原理[M].徐州:中國礦業(yè)大學(xué)出版社,2007[6]翁家杰.地下工程[M].北京:煤炭工業(yè)出版社,1995[7]秦漢禮.盾構(gòu)隧道鋼筋混凝土管片制作技術(shù)[J].隧道建設(shè),2006[8]朱合華.土壓平衡盾構(gòu)法施工參數(shù)的模型試驗研究[J].巖土工程學(xué)報雜志編輯部,2006[9]翁家杰.地下工程[M].北京:煤炭工業(yè)出版社,1995[10]孫均.地鐵隧道盾構(gòu)掘進(jìn)施工市區(qū)的環(huán)境土工安全技術(shù)標(biāo)準(zhǔn)及其變形與沉降控制[J].世界隧道,2000(增刊):233~240[11]施仲衡.張彌等.地下鐵道設(shè)計與施工[M].西安:陜西科學(xué)技術(shù)出版社,1997.6,378~381附錄一翻譯部分原文AnalysisofSettlementCausedbyTBMConstructioninSandFormationsinBeijingABSTRACTBasedondatacollectedintunnelboringmachine(TBM)constructioninBeijingsubway,soilsettlementpredictionmodelsforsandformationsareanalyzedandverified.ThroughtheanalysisofPeck’sformula,thepaperpointsoutthatthepreconditionistodeterminethecoefficientofsettlementgroovewidth(i),whileiisfurthercontrolledbythemaximumsettlementofsingletunnel(δ1max).ByusingthesettlementequationofTakeyamaTakashi,δ1maxcanbecalculateddirectly,buttheelasticmodulus(E)shouldbeanequivalentvaluethatrepresentsallthesoilsinvolved.Inthecalculationofthecoefficientofsettlementgroovewidth(i)byusingO'Reilly-Newmethod,theresultsislargelyaffectedbytheformationparameters.InordertofindanidealmodeltopredictthesettlementinTBMconstructioninBeijingsandyformation,modifiedcalculationmethodsofEandiarerecommended.Theresultsshowthatthemaximumsettlementinthegroundsurface,thetotalwidthofsettlementgrooveandthesettlementcurveinthecrosssectionmatchmonitoreddataverywell.Fordoubleparalleltunnels,thesettlementatanypointcanbecalculatedbyaddingindividualsettlementgeneratedbyeachtunnelconstruction,andeachofwhichcanbecalculatedbyusingtheformulasofPeckandTakeyamaTakashi.Butthesettlementsatthecenterlineofeachtunnelaredifferent.Theamountofsettlementisaffectedbyconstructionsequenceofthetwotunnels.Theearlierthetunnelisconstructed,thelargertheeventuallysettlementis.KEYWORDSTBM;Settlement;CoefficientofSettlementGrooveWidth;Peck;TakeyamaTakashi;BeijingsubwayINTRODUCTIONRecentyearstheBeijingsubwayextendsatthespeedofabout100kmeveryyear.MostofthesubwaytunnelsareconstructedbyusingearthpressurebalanceTBMmethod.BecauseBeijingcityliesintheintersectionareaofplainandmountain,themainformationsencounteredinTBMconstructionaresand,gravel,siltysand,finesand,clay,etc.EspeciallyineasternBeijing,thesubwaytunnelsarenormallyinthedepthof20munderground,andthesand-gravelformationsarefullofwater.Inthiskindofsituation,settlementcontrolisabasicrequirement;otherwisebuildings,pipelinesandotherundergroundinfrastructureswillbeaffectedseverely,evendamaged.SohowtoexactlypredictsoillossinTBMconstructionisveryimportant.ByfarthemethodsforanalysisofsettlementinducedbyTBMarederivedfromtheoretical,experienceornumericalanalysis.Amongthem,Peck’sformulaiswidelyaccepted.Itsupposesthesettlementiscausedbysoillossandthevolumeofsettlementgrooveequivalentstothevolumeofsoillossifconstructionisunderundrainedconditions.ThecurveofgroundsettlementgroovebyPeck’sformulaisdistributedintheshapeofnormalcurve(Peck,1969).O'Reilly-NewputforwardanotherformulatocalculatethesettlementgroovewidthgeneratedbytheTBMconstructionindifferentburieddepthoftunnels(O'Reilly,1982).Attewellinducedothertwofactors,kandn,tocalculatethesettlementgroovewidth(Attewell,1986).In1982FujitaofJapananalyzed74settlementcasescausedbyTBMconstruction.TheresultshowedthattheshapeofthesettlementgroovewasverysimilartothatofPeck’scurve.Thereafter,theJapanesescholarTakeyamaTakashiabsorbedthelatestresearchresultsfromelasticfiniteanalysis,analyzedthemonitoreddata,andthenbroughtforwardthemodifiedsettlementpredictionformula(Rankin,1988andWei,2010).Anyway,ifthesettlementistobepredictedproperly,besidesemployingasuitablesettlementformula,thechoiceoftheproperparametersofsoilsandconstructionisequallyimportant.Thefollowingpartdemonstratessomesuccessfulpredictionpracticefortheselectionofsettlementcalculationformulaanddisposingtechniqueofsoilparameters.SETTLEMENTDETERMINATIONTHEORIESPeck’sformula.ThemostacceptedPeck’sformulaforthecalculationofgroundsettlementyieldedbytunnelboringconstructionisasfollows:So,Equation(1)takestheformDeterminationofcoefficientofsettlementgroovewidth(i).Therearethreewaystoobtainthecoefficientofsettlementgroovewidth(i).Method1.AccordingtotherecommendationofEnglishscholarO'Reilly-New,icanbedeterminedaccordingtotunneldepthandsoiltypes,asshowninEquation(4).i=α?Z(4)Whereα=Factorrelatedtosoil.α=0.4forhardclay;α=0.7forsoftclay;α=0.5formediumhardclay;α=0.2~0.3forsand.Z=Tunneldepthfromgroundsurfacetothetopofatunnel,m.Method2.AccordingtoKloofandSchmid(Zhouwenbo,2004;Yinluchao,1999;ZhangFengxiang,2005),forplasticundrainedclay,thecoefficientofsettlementgroovewidthcanbecalculatedbyEquation(5).WhereR=Outerdiameteroftunnelbore,mMethod3.icanbecalculatedaccordingtogeologicalcondition,tunneldepthandtunnelradius,asshowninEquation(6).Whereφ=Internalfrictionangelofsoil,degreeFurthermore,scholarCordingregardssettlementgrooveasVshapeslot,sothesettlementgroovewidthcanbesimplifiedas:B=5i(7)WhereB=Settlementgroovewidth,mExperienceformulaofTakeyamaTakashi.Throughthestudyofmonitoreddataandtheachievementofelasticfinite,TakeyamaTakashideducedthefollowingequationtocalculatethemaximumsettlementgeneratedbytunnelTBMconstruction.Themaximumsettlementproducedbysingletunnelconstructionis:Themaximumsettlementinducedbydoubletunnelsconstructionis:Whereδ1max=MaximumsettlementinsingletunnelTBMconstruction,mδmax=MaximumsettlementindoubletunnelTBMconstruction,mH=Distancebetweenthetopoftunnelandgroundsurface,mD=Outerdiameteroftunnelbore,mE=Weightedmeanvalueofsoilelasticmodulus,MPaW=Netdistancebetweentwotunnels,mCASESTUDIES:TBMCONSTRUCTIONBETWEENSTATIONSOFSANYUANBRIDGEANDLIANGMARIVERINBEIJINGSUBWAYLINE10ThetunnelbetweenstationsofSanYanBridgeandLiangMaRiverinBeijingSubwayLine10isconstructedbyearthpressurebalancetunnelboringmachine.Thedistancebetweenlefttunnelandrighttunnelis12m.Thedepthbetweenthetopoftunnelandgroundsurfaceis12~16m,theouterdiameteroftunnelboreis6.28m.Theformationsencounteredintheconstructionaresilt,siltyclay,clay,siltysand,andsand.Thegroundwaterisabovethebottomoftunnelbase(Co.,Ltd.2003).Whilethetunnelsectionisrunningalongtheeastthirdringroad,therearemanybridges,buildings,pipelinesabovethetunnel,sothesettlementcontroloftheconstructionisverystrict.InordertodiscussthesettlementpredictiontheoryforBeijingsubwayconstruction,asanexample,onerandomsectionischosen,forsimplicity,hereandthereafternameitSectionA.Itslengthis50m,thedistancebetweendoubletunnelscenterlinesis12m,andthecoverdepthoftunnelHis14.2m.Thetunnelisadvancedintheformationsoffinesandandmediumcoarsesand.ThemainparametersofsoilsarelistedinTable1.SOILSETTLEMENTPREDICTIONMaximumgroundsurfacesettlementcausedbysingletunnelTBMconstruction.ByusingEquation(9),themaximumgroundsurfacesettlementcausedbysingletunnelTBMconstructioninSectionAcanbecalculated.HereH=14.2m,D=6.28m,whileEisregardedasweightedaveragevalueofeachsoillayers,asshowninEquation(10).WhereEs=Weightedcompressionmodulusofallsoillayers,MPaEsi=Compressionmodulusofsoillayeri,MPahi=Depthofsoillayeri,mByusingEquation(10)andthedatainTable1,Es=15.2676MPa.Moreover,theelasticmoduluscanbeobtainedbyusingEquation(11)ifcompressionmodulusisknown.Coefficientofsettlementgroovewidth(i)andsettlementgroovewidth(B).Inthisproject,theformationsencounteredintunnelconstructionaresaturated,dense,lowcompressiblesiltysandandmediumcoarsesand.Whiletheformationsabovethetunnelareplasticmediumcompressiblesiltyclayanddensemediumcompressiblesilt.Asmentionedbefore,forsandlayersi=0.25Z;forsiltyclayi=0.5Z;forsilti=0.35Z.Soheretheweightedmeanvalueisdefinedasthefinalivalue,asshowninequation(12).=Accordingtoequation(7),thetotalsettlementgroovewidthcausedbysingletunnelboringconstructionis5i=5×6.788m=33.942m.Groundsurfacesettlementcausedbysingletunnelconstruction.Ifiandδ1maxareknown,thegroundsurfacesettlementinanypoint(δ1(x))canbecalculatedbyequation(3),asshowninTable2.Notethatδ1max=14.1mminthetable.Table2indicatesthatifthedistancefromanypointingroundsurfacetohorizontaltunnelcenterlineisgreatthan17.5m,thenthesettlementislessthan0.5mm.Thismeansatthatpointtherewillonlytinyinfluencebytunnelboringconstruction.Sothetotalsettlementgroovewidthcanbeconsideredas2×17.5=35m,whichismuchclosertothevalueof5i(33.94m).Groundsurfacesettlementcausedbydoubletunnelsconstruction.Maximumsettlementafterdoubletunnelsconstruction.Generallythenearerdistancethedoubletunnelsis,thegreateradditionalsettlementcausedbythetunnelboringconstructionis.Intheprojectmentionedabove,δ1max=14.1mm,thenetdistancebetweenthetwotunnelsW=5.72m,tunneldiameterD=6.28m.Thusfromequation(9)δmax=17.6mm,thatmeans,themaximumgroundsettlementafterthedoubletunnelsconstructionis17.6mm.Settlementdevelopingprocessintheconstructionofthesecondtunnel.Followingistheanalysisofsettlingprocessintheconstructionperiodofthesecondtunnel.(1)Intheperiodofthefirsttunnelhasbeenfinishedandthesecondtunnelconstructionnotyetbegin,themaximumgroundsettlementcausedbythefirsttunnelisδ1max=14.1mm,asmentionedabove.Withtheincreaseofthedistancetotunnelcenterline,thegroundsettlementcausedbythefirsttunnelconstructionwillgraduallydecrease.Byusingequation(3)andsettingi=6.788m,wecanobtainδ1(6)=9.6mmwhenx=6mandδ1(12)=3.0mmwhenx=12mrespectively.(2)Theadditionalgroundsettlementcausedbythesecondtunnelconstructionisthesubtractionofthetotalmaximumsettlementcausedbydoubletunnelsconstructionfromthesettlementcausedbythefirsttunnelconstruction.(LiuBo,TaoLong-guangandDingCheng-gang,etal.2006).Forthepointsonsymmetrytunnelliner,x=6m,δ2(6)=δmax-δ1(6)=17.6-9.6=8.0mm.(3)Theaccumulatedgroundsettlementabovethesecondtunnelcenterlineconsistsoftwoparts.Thefirstpartisthesettlementcausedbythefirsttunnelconstructioninthepoint,δ1(12)=3.0mm.TheSecondpartisthesettlementcausedbythesecondtunnelconstruction,whichcanbecalculatedbyusingequation(3).Hereδ2(6)=8.0mm,i=6.788mm,δ2max=11.8mm.Sothetotalgroundsettlementabovethesecondtunnelcenterlineis:δ2max+δ1(12)=11.8+3.0=14.8mm.(4)Theaccumulatedgroundsettlementabovethefirsttunnelcenterlinealsoconsistsoftwoparts.Firstthesettlementcausedbythefirsttunnelconstructioninthepointδ1max=14.1mm.Thesecondpartisthesettlementcausedbythesecondtunnelconstruction,whichcanbecalculatedbyusingequation(3),whereδ2(12)=2.51mm,i=6.788mm.Sothetotalgroundsettlementabovethefirsttunnelcenterlineis:δ1max+δ2(12)=14.1+2.51=16.61mm.Throughtheaboveanalysis,thetotalsettlementabovethesecondtunnelcenterline(14.8mm)islessthanthatabovethefirsttunnelcenterline(16.61mm).Totalsettlementatanypointafterdoubletunnelscompletion.Thesettlementatanypointingroundsurfacecausedbytwodoubletunnelsconstructioncanbecalculatedbyfollowingequation:δ(x,y)=δ1(x)+δ2(y)(13)Wherex=Horizontaldistancefromcalculatingpointtocenterlineoffirsttunnely=HorizontaldistancefromcalculatingpointtocenterlineofsecondtunnelInsectionA,thelefttunnelisfirstlyconstructed,thentherighttunnel.Afterthetwotunnelscompletion,thesettlementatanypointingroundsurfacecanbecalculated:(1)Ifcalculatingpointislocatedattheleftofthelefttunnel,thenxequalsthedistancefromthepointtocenterlineoflefttunnel,andy=W+D+x.Forinstance,ifx=6m,theny=18m,δ(6,18)=δ1(6)+δ2(18)=9.6+0.3=9.9mm.(2)Ifcalculatingpointliesinthemiddleofthecenterlinesoflefttunnelandrighttunnel,forexample,ifx=6m,theny=W+D-x=6m,δ(6,6)=δ1(6)+δ2(6)=9.6+8.0=17.6mm.Thisvaluerepresentsthegreatestsettlementcausedbydoubletunnelsconstruction,wherelocatedinthegroundabovethenearesttunnelliner.(3)Ifcalculatingpointisattherightoftherighttunnel,e.g.,ify=6m,thenx=18m,δ(18,6)=δ1(18)+δ2(6)=0.4+8.0=8.4mm.Furthermore,theindividualandaccumulatedgroundsettlementcausedbythefirstandthesecondtunnelsarecalculated,asshowninFigure1.COMPARISONOFPREDICTEDSETTLEMENTANDMONITOREDDATAMonitoredgroundsettlementgeneratedbythefirsttunnelconstruction.Inordertoevaluatethesettlementinducedbythefirsttunnelconstruction,elevensettlementobservationpointsingroundsurfaceoflefttunnelcenterlineareburiedinSectionAinthelengthof50m.Thedistancebetweentwoneighboringobservationpointsis5m,andthepointsareenumerated1~11.ThelefttunnelwasfirstlyconstructedandpassedthroughsectionA,then6monthslater,therighttunneldrilledthroughsectionAalso.Table3listedtheobservedsettlementdataafter60daysoflefttunnelpassedthrough,whilerighttunnelnotreachedhereyet(about150mawayfromsectionA).Theaveragesettlementofthe11observationpointsingroundsurfaceabovethelefttunnelcenterlineis13.56mm,whilethemeansettlementofthe7observationpointsingroundsurfaceabovetherighttunnelcenterlineis4.88mm.Thesesettlementsarecausedonlybytheconstructionoflefttunnelandobservedafter60dayslateroftheconstruction.Figure2comparedthetheoreticalsettlementvalueandactuallyobservedsettlementingroundsurfaceabovethelefttunnelcenterline.Itcanbeseenthatthetheoreticalvalue(δ1max=14.1mm)almostequalstheaveragesettlementof11observationpoints.Figure3showsthecomparisonofobservedsettlementvalue,whichismonitoredafter60dayslateroftheconstructionoflefttunnel,andthecalculatedsettlementingroundsurfaceabovetherighttunnelcenterline.Itcanbeseenthatalthoughthereare12mbetweenlefttunnelcenterlineandtherighttunnelcenterline,yetproducedabout4.0mmsettlementontherighttunnelcenterlineonlybecauseoftheconstructionoflefttunnel.Undertheconditionofδ1max=14.1mm,asmentionedearlier,δ1(12)=3.0mm.Sothedeviationbetweenobservedvalueandtheoreticalvalueisabout1mm,whichdemonstratesabovetheoreticalformulaisbelievable.Accumulatedsettlementsbydoubletunnelsconstruction.Figure4showsthegroundsettlementatobservationpointnumber10.Afterthelefttunneladvancedhereandreachedstable,theultimatesettlementwas12.75mm.Aftertherighttunnelpassedthrough,theadditionalsettlementincreasedforaperiod,eventuallystabilizedat4.46mm,atthattimethetotalsettlementatpoint10reached17.21mm,whichwasveryclosetothetheoreticalvalue16.61mmFigure5showsthemonitoreddataofarandompointSYA24,whichislocatedattherightoftherighttunnel.Thedistanceofthepointtothelefttunnelcenterlineis18.5m,totherighttunnelcenterlineis6.5m.Lefttunnelconstructioncaused1.85mmsettlement,thenwhentherighttunnelalsofinisheditcausedtotal7.61mmsettlementatthatpoint.Whenthelefttunnelpassedthrough,thesettlementofthepointx=18.5isδ1(18.5)=0.3mm;whentherighttunnelpassedthrough,thesettlementofthepointy=6.5isδ2(6.5)=7.5mm.Accordingtoequation(13),thetotalsettlementatthepointshouldbe7.8mm,whichisveryclosertothemonitoredvalue7.61mm.Moreover,throughtheanalysisofallmonitoreddatagatheredinleftandrighttunnelconstruction,itisshowedthatthemaximumsettlementpointsaredistributedintheareasbetweenlefttunnelandrighttunnel,andmostofthemarelocatedatthegroundsurfaceabovethenearesttunnelliner,thevalueisinthescopeof17mmand20mm.Comparedwiththetheoreticalvalueδmax=17.6mm,thedeviationisacceptable.Thereforethecalculationequationsmentionedabovefortotalsettlementindoubletunnelconstructionisbelievable.Maximumgroundsettlementsunderdifferentdistancebetweentwotunnels.Forδmaxmustgreatthanδ1max,equation(9)isonlysuitableundertheconditionofW/(2D)<0.7inthecalculationofsettlementcausedbydoubletunnelsconstruction.Therefore,formosttunnelsinBeijingsubway,whilethediameteroftunnelis6m,thedistancebetweentunnelcenterlinesshouldbettergreatthan14m,sothatthetotalsettlementinthefirsttunnelcenterlinewillhaveonlytinyincreasebecauseoftheconstructionofthesecondtunnel.Figure6showsthattotalsettlementalmostkeeplinearincreasewiththedecreaseofthenetdistancebetweentwotunnels,ifthenetdistanceislessthan1.4D.Monitoredsettlementgroovewidth.Inordertodeducethesettlementgroovewidth,theobservationdatafromthecrosssectionaroundpointnumber6areutilized.Theobservationpointsareinline,whichthelinedirectionisperpendiculartothedirectionoftunnelcenterline.Total7monitoringpointsaresetuponbothsideofpointNo.6,twoofthemsetintheleft,andtheothersareintheright.Thedistanceofnearbytwomonitoringpointsis3m.Thedatarecordedarelistedintable4andplottedonFigure7.Itcanbeseenthatthecalculatedvaluecoincidesperfectlywiththeactualmonitoredsettlement.ThetotaltrendisalsoaccordwiththecurveofPeck’snormalsettlementcurveverywell.Themonitoredsettlementofthemostoutsidepointis1.82mm,whilethedistanceofthepointtothecenterlineofmaximumsettlementis15m.AlsoFigure5showedthattheactualmonitoredsettlementaroundobservationpointSYA24is1.85mm,whilethedistanceofthepointtothemaximumsettlementlineis18.5m.Thereforetheminimumsettlementgroovewidthcausedbysingletunnelconstructionisatleast30m.Accordingtothistrend,thewidthisdeducedtobe35m,whichisveryclosetotheabovecalculatedvalue33.941m.Sotheequationsforcalculatingthesettlementgroovewidthinthearticlearecorrect,andtheyaresuitableforpredictionthesettlementgeneratedinTBMtunnelconstructioninsandformationsinBeijingsubway.CONCLUSIONUpontheaboveanalysis,thefollowingconclusioncanbedrawn:(1)Ifsoilparametersareselectedproperly,thesettlementgeneratedbyTBMtunnelconstructioninBeijingsubwayinsandyformationscanbepredictedaccuratelybyusingtheformulasofPeckandTakeyamaTakashi.(2)WhensettlementiscalculatedwiththeformulaofTakeyamaTakashi,themaximumsettlementwillincreasewiththedecreaseofweightedelasticmodulus,andthesoilmodulusshouldcalculatedwiththeweightedaveragevalueofallsoillayers’compressionmodulus.(3)Thecoefficientofsettlementgroovewidth(i)shouldbetakenastheweightedaveragevalueofdifferentsoils.Thewidthofsettlementgroovecausedbysingletunnelconstructionisabout5i.(4)Themaximumsettlementforthedoubletunnelconstructionliesintheareasbetweentwotunnelcenterlinesifthenetdistancebetweenthemislessthan1.4tunneldiameter(D).Theinfluencebythefollowingconstructedtunnelwillbeminimizedifthenetdistancegreaterthan1.4D.(5)Thesettlementfromthemiddlelineofthetwotunnelcenterlinestooutsideisnotsymmetric.Groundsettlementnearthefirstlyconstructedtunnelwilllargerthanthatoflaterconstructedone.翻譯對北京地區(qū)沙地層TBM隧道施工所造成沉降的分析摘要根據(jù)在北京地鐵運用TBM開挖隧道施工過程中所得資料,利用土沉降預(yù)測模型對沙性土進(jìn)行了分析和檢驗,通過Peck法則的分析,報告指出首要必須確定沉降槽寬度的系數(shù)(i),而i值是進(jìn)一步控制最大計算單隧道(δ1max)。通過TakeyamaTiakash方程,δ1max能夠被直接計算出來,但是彈性模量E應(yīng)該是一個代表各種土質(zhì)的等效值,用O'Reilly-New方法計算沉降槽寬度系數(shù)(i),其結(jié)果受土壤構(gòu)造物參數(shù)大量的影響,為了找到一種理想的模型去預(yù)測北京地區(qū)沙性土TBM隧道施工帶來的沉降,修正計算方法中的E和i值都是推薦值,其結(jié)果顯示了地表沉降的最大值,整個沉降槽的寬度和沉降曲線與監(jiān)測數(shù)據(jù)相符。對于平行雙線隧道,其沉降在一定程度上能夠通過增加對每個單線隧道施工引起的沉降的計算而算的,而單線隧道沉降由Peck和TakeyamaTakashi.法則計算,但是每條隧道的中心線沉降不同,沉降數(shù)量受兩條隧道施工次序的影響,越早施工的隧道,其最終沉降量越大。關(guān)鍵詞:TBM沉降沉降槽寬度PeckTakeyamaTakashi北京地鐵說明近些年來,北京地鐵以大約每年100公里的速度延伸著,大多數(shù)地鐵隧道都利用TBM土壓力平衡方法施工的,因為北京市位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《救生技術(shù)知識講座》課件
- 浙江省杭州八中2025屆高考沖刺數(shù)學(xué)模擬試題含解析
- 2025屆河南省漯河市重點中學(xué)高考英語三模試卷含解析
- 現(xiàn)代學(xué)徒制課題:現(xiàn)場工程師的內(nèi)涵特征和培養(yǎng)路徑研究(附:研究思路模板、可修改技術(shù)路線圖)
- 福建省莆田市第二十五中學(xué)2025屆高三考前熱身語文試卷含解析
- 黑龍江省雙鴨山市重點中學(xué)2025屆高考數(shù)學(xué)一模試卷含解析
- 穩(wěn)派教育2025屆高三3月份模擬考試語文試題含解析
- 2025屆漳州市重點中學(xué)高三壓軸卷數(shù)學(xué)試卷含解析
- 福建省泉州市泉港第一中學(xué)2025屆高考考前模擬語文試題含解析
- 2025屆四川省成都市重點中學(xué)高考沖刺押題(最后一卷)英語試卷含解析
- 通信線路高風(fēng)險作業(yè)施工安全操作須知樣本
- 蘇教版五年級數(shù)學(xué)上冊第三單元達(dá)標(biāo)測試卷含答案
- JC-T 753-2001 硅質(zhì)玻璃原料化學(xué)分析方法
- 沈陽職業(yè)技術(shù)學(xué)院單招《職業(yè)技能測試》參考試題庫(含答案)
- 高等數(shù)學(xué)課件第一章函數(shù)與極限
- 黃石市黃石港區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)測評卷(含答案)
- 朗格罕斯細(xì)胞組織細(xì)胞增生癥課件
- 孤獨癥abc量表孤獨癥兒童行為量表ABC量表
- 國企紀(jì)檢監(jiān)察培訓(xùn)課件
- 納米技術(shù)在光電領(lǐng)域的應(yīng)用
- 人工智能與區(qū)塊鏈的融合之路
評論
0/150
提交評論