




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
大連理工大學(xué)材料學(xué)院鑄造工程研究中心315室Tel:84709400實(shí)驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理盧一平E-mail:luyiping@課程設(shè)置的意義-前沿
顧名思義,“實(shí)驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理”課程是關(guān)于實(shí)驗(yàn)前的設(shè)計(jì)理論、知識(shí)、方法、技能,以及實(shí)驗(yàn)后對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行科學(xué)處理的理論、知識(shí)方法與技能的課程。開設(shè)本課程的意義:材料學(xué)科的特點(diǎn)-必要性材料學(xué)科的畢業(yè)生去向:絕大多數(shù)學(xué)生生畢業(yè)后去大型科技企業(yè),研究所、大學(xué)等科研學(xué)術(shù)機(jī)構(gòu),繼續(xù)從事科研技術(shù)研發(fā)方面的工作。
材料學(xué)科特點(diǎn):需要常常做實(shí)驗(yàn),確定最佳的技術(shù)工藝條件,獲得最佳的產(chǎn)品配方及對(duì)產(chǎn)品性能進(jìn)行優(yōu)化。幾乎所有專業(yè)都開設(shè)了實(shí)驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理這門課,是必修課可見其重要性課程度的性質(zhì):試驗(yàn)設(shè)計(jì)方法是一項(xiàng)通用技術(shù),是當(dāng)代科技和工程技術(shù)人員必須掌握的技術(shù)方法。課程的任務(wù):讓學(xué)生熟悉并掌握近代最常用、最有效的幾種優(yōu)化試驗(yàn)設(shè)計(jì)方法的基本原理及其應(yīng)用。什么叫做(優(yōu)化)試驗(yàn)設(shè)計(jì)方法?把數(shù)學(xué)上優(yōu)化理論、技術(shù)應(yīng)用于試驗(yàn)設(shè)計(jì)中,科學(xué)的安排試驗(yàn)、處理試驗(yàn)結(jié)果的方法。采用科學(xué)的方法去安排試驗(yàn),處理試驗(yàn)結(jié)果,以最少的人力和物力消費(fèi),在最短的時(shí)間內(nèi)取得更多、更好的生產(chǎn)和科研成果的最有效的技術(shù)方法。優(yōu)化試驗(yàn)設(shè)計(jì)方法起源上世紀(jì)30年代,由于農(nóng)業(yè)試驗(yàn)的需要,費(fèi)歇(R.A.Fisher)在試驗(yàn)設(shè)計(jì)和統(tǒng)計(jì)分析方面做出了一系列先驅(qū)工作,從此試驗(yàn)設(shè)計(jì)成為統(tǒng)計(jì)科學(xué)的一個(gè)分支。上世紀(jì)40年代,在二次世界大戰(zhàn)期間,美國(guó)軍方大量應(yīng)用試驗(yàn)設(shè)計(jì)方法。隨后F.Yates,R.C.Bose,O.Kempthome,W.G.Cochran,D.R.Cox和G.E.P.Box對(duì)試驗(yàn)設(shè)計(jì)都作出了杰出的貢獻(xiàn),使該分支在理論上日趨完善,在應(yīng)用上日趨廣泛。50年代,日本統(tǒng)計(jì)學(xué)家田口玄一將試驗(yàn)設(shè)計(jì)中應(yīng)用最廣的正交設(shè)計(jì)表格化,在方法解說(shuō)方面深入淺出為試驗(yàn)設(shè)計(jì)的更廣泛使用作出了眾所周知的貢獻(xiàn)。我國(guó)優(yōu)化試驗(yàn)設(shè)計(jì)方法60末期代,華羅庚教授在我國(guó)倡導(dǎo)與普及的“優(yōu)選法”,如黃金分割法、分?jǐn)?shù)法和斐波那契數(shù)列法等。數(shù)理統(tǒng)計(jì)學(xué)者在工業(yè)部門中普及“正交設(shè)計(jì)”法。70年代中期,優(yōu)選法在全國(guó)各行各業(yè)取得明顯成效。1978年,七機(jī)部由于導(dǎo)彈設(shè)計(jì)的要求,提出了一個(gè)五因素的試驗(yàn),希望每個(gè)因素的水平數(shù)要多于10,而試驗(yàn)總數(shù)又不超過(guò)50,顯然優(yōu)選法和正交設(shè)計(jì)都不能用,隨后,方開泰教授(中國(guó)科學(xué)院應(yīng)用數(shù)學(xué)研究所)和王元院士提出“均勻設(shè)計(jì)”法,這一方法在導(dǎo)彈設(shè)計(jì)中取得了成效。優(yōu)化試驗(yàn)設(shè)計(jì)試驗(yàn)設(shè)計(jì)在科學(xué)研究中的地位與意義:試驗(yàn)設(shè)計(jì)方法是一項(xiàng)通用技術(shù),是當(dāng)代科技和工程技術(shù)人員必須掌握的技術(shù)方法。科學(xué)地安排實(shí)驗(yàn),以最少的人力和物力消費(fèi),在最短的時(shí)間內(nèi)取得更多、更好的生產(chǎn)和科研成果。簡(jiǎn)稱為:多、快、好、省。可應(yīng)用于:提高試驗(yàn)效率、優(yōu)化產(chǎn)品設(shè)計(jì)、改進(jìn)工藝技術(shù)、強(qiáng)化質(zhì)量管理。試驗(yàn)設(shè)計(jì)在工業(yè)生產(chǎn)和工程設(shè)計(jì)及科學(xué)研究中能發(fā)揮重要的作用,例如:提高產(chǎn)量減少質(zhì)量的波動(dòng),提高產(chǎn)品質(zhì)量水準(zhǔn)大大縮短新產(chǎn)品試驗(yàn)周期降低成本延長(zhǎng)產(chǎn)品壽命多用在化工、電子、材料、建工、建材、石油、冶金、機(jī)械、交通、電力……第一部分優(yōu)選法
典型事例1:長(zhǎng)征3號(hào)火箭定型試驗(yàn),新研制的火箭,要檢測(cè)其安全性穩(wěn)定性。通過(guò)高超設(shè)計(jì)的實(shí)驗(yàn)方案及數(shù)據(jù)處理技術(shù),不及蘇聯(lián)及美國(guó)一半的試驗(yàn)次數(shù)就完成了定型試驗(yàn),大大節(jié)省了財(cái)力、物力和時(shí)間。在材料研究過(guò)程中,廣泛使用實(shí)驗(yàn)手段去探求和掌握研究對(duì)象的規(guī)律,材料工藝開發(fā)過(guò)程更是這樣。面對(duì)大量的實(shí)驗(yàn)工作報(bào),除了有關(guān)的專業(yè)知識(shí)和文獻(xiàn)信息之外,還必須有一套科學(xué)的實(shí)驗(yàn)設(shè)計(jì)方法,才能花費(fèi)盡量少的力氣,獲取最多的信息。經(jīng)過(guò)設(shè)計(jì)的實(shí)驗(yàn),效果大大提高,與不經(jīng)過(guò)設(shè)計(jì)的實(shí)驗(yàn)相比,情況大不相同。典型事例2:高熵多主元合金的研發(fā)與制備。例如:Al100Co100Cr100Cu100Fe100Ni100合金系的成分優(yōu)化與設(shè)計(jì)。0~100之間,怎么設(shè)計(jì)與處理?典型-案類1.1單因素問題的優(yōu)選法優(yōu)選法:根據(jù)生產(chǎn)和科研中的不同問題,利用數(shù)學(xué)原理,合理地安排試驗(yàn)點(diǎn),減少試驗(yàn)次數(shù),以求迅速地找到最佳點(diǎn)的一類科學(xué)方法。如果只考慮改變對(duì)目標(biāo)影響最大的某個(gè)因素,而其他因素保持不變,就是單因素問題的優(yōu)選方法。適用于:試驗(yàn)指標(biāo)與因素間不能用數(shù)學(xué)形式表達(dá)(數(shù)據(jù)發(fā)散無(wú)數(shù)學(xué)規(guī)律)表達(dá)式很復(fù)雜(未知數(shù)的N次方大于3以上)1.1.1黃金分割法黃金分割點(diǎn)是誰(shuí)發(fā)現(xiàn)的?,它是古希臘著名哲學(xué)家、數(shù)學(xué)家畢達(dá)哥拉斯。黃金分割法的應(yīng)用領(lǐng)域有哪些?繪畫、雕塑、音樂、建筑、藝術(shù)、管理、工程設(shè)計(jì)等領(lǐng)域都有應(yīng)用。請(qǐng)舉例。1.1.1黃金分割法基本命題試驗(yàn)指標(biāo)f(x)是定義區(qū)間(a,b)的單峰函數(shù)用盡量少的試驗(yàn)次數(shù),來(lái)確定f(x)的最大值的近似位置
x1x2abx3x4abxx變量取值是任意的若x1<x2<x,有f(x1)<f(x2)<f(x),若x<x3<x4,有f(x4)<f(x3)<f(x),則f(x)最大則稱:f(x)為[a,b]上的單鋒函數(shù),反之稱為單谷函數(shù),單峰單谷函數(shù)統(tǒng)稱單極值函數(shù)。峰值點(diǎn)稱為極值點(diǎn),最大值點(diǎn)和最小值點(diǎn)稱為最優(yōu)點(diǎn)黃金分割法,亦稱0.618法,0.618是:
在一般情況下,通過(guò)預(yù)實(shí)驗(yàn)或其它先驗(yàn)信息,確定了實(shí)驗(yàn)范圍[a,b],可以用黃金分割法設(shè)計(jì)實(shí)驗(yàn),安排實(shí)驗(yàn)點(diǎn)位置。黃金分割法,是把第一個(gè)實(shí)驗(yàn)點(diǎn)安排在實(shí)驗(yàn)范圍距左端點(diǎn)a為區(qū)間全長(zhǎng)的0.618處。第一個(gè)實(shí)驗(yàn)點(diǎn)X1=a+(b-a)×0.618第二個(gè)實(shí)驗(yàn)點(diǎn)X2=b-(b-a)×0.618或X2=大+?。校ㄖ兄敢呀?jīng)做過(guò)的試驗(yàn)點(diǎn))
比較試驗(yàn)結(jié)果y1=f(x1)和y2=f(x2)的大小。如果f(x1)大,就去掉(a,x2)部分,留下的范圍里形成新的含優(yōu)區(qū)間(x2,b)繼續(xù)試驗(yàn)。
例:要熔煉某種鋼,為了提高其強(qiáng)度而加入某種微量元素,含優(yōu)區(qū)間為[1000,2000]。為了尋求最大值點(diǎn),分別在x1點(diǎn)和x2點(diǎn)做二次試驗(yàn),其中:x1=a+(b-a)×0.618=1000+(2000-1000)×0.618=1618克x2=b-(b-a)×0.618=2000-(2000-1000)×0.618=1382克然后把加入量1618g和1382g的實(shí)驗(yàn)結(jié)果進(jìn)行比較,如果x2點(diǎn)的強(qiáng)度大于x1點(diǎn)的強(qiáng)度,則把x1~b部分去掉,在余下的空間里又形成了一個(gè)縮小的含優(yōu)空間[a,x1]。繼續(xù)試驗(yàn)再求下一個(gè)試驗(yàn)點(diǎn)x3。x3=x1-(x1-a)×0.618=1618-(1618-1000)×0.618=1236克再比較x3和x2點(diǎn)的強(qiáng)度,若x2點(diǎn)的強(qiáng)度大于x3點(diǎn)的強(qiáng)度,則把a(bǔ)~x3部分去掉,在余下的[x3,x1]區(qū)間繼續(xù)求另一個(gè)對(duì)稱點(diǎn)x4=1472克?。再對(duì)x2和x4進(jìn)行比較,如此不斷縮小含優(yōu)區(qū)間,直到獲得滿意的結(jié)果。x2x1abx3x18法的數(shù)學(xué)依據(jù)和來(lái)源2000多年前,古希臘雅典學(xué)派的第三大算學(xué)家歐道克薩斯首先提出黃金分割。美國(guó)J.基弗在1953年首先提出0.618法。中國(guó)的數(shù)學(xué)家華羅庚推廣了優(yōu)選法在工廠和企業(yè)的大規(guī)模應(yīng)用。為什么選0.618,又為什么是對(duì)稱取點(diǎn)?假設(shè)第一個(gè)試驗(yàn)點(diǎn)取在含優(yōu)區(qū)間[a,b]內(nèi)的x1點(diǎn)位置是合適的,則x1在[a,b]內(nèi)應(yīng)有合適的比例位置:(1-1)為了知道x1的好壞,根據(jù)對(duì)等原則必須再選對(duì)稱的選一個(gè)點(diǎn)x2x2-a=b-x1(1-2)假定x2比x1好,余下的含優(yōu)區(qū)間為[a,x1],則應(yīng)滿足:(1-3)(1-4)聯(lián)立(1-2)和(1-3)式子,即滿足聯(lián)立方程:解方程(1-4),有:因?yàn)閤1是[a,b]內(nèi)的點(diǎn),x2是[a,x1]內(nèi)的點(diǎn),所以可知0<1.1.3分?jǐn)?shù)法
1202年,意大利數(shù)學(xué)家斐波那契(Fibonacci)出版了他的「珠算原理」。他在書中提出了一個(gè)關(guān)于兔子繁殖的問題:
如果一對(duì)兔子每月能生一對(duì)小兔(一雄一雌),而每對(duì)小兔在他出生后的第三個(gè)月里,又能開始生一對(duì)小兔,假定在不發(fā)生死亡的情況下,由一對(duì)出生的小兔開始,50個(gè)月后會(huì)有多少對(duì)兔子?在第一個(gè)月時(shí),只有一對(duì)小兔子,過(guò)了一個(gè)月,那對(duì)兔子成熟
了,在第三個(gè)月時(shí)便生下一對(duì)小兔子,這時(shí)有兩對(duì)小兔子。再過(guò)一個(gè)多月,成熟的兔子再生一對(duì)小兔子,而另一對(duì)小兔子長(zhǎng)大,有三對(duì)小兔子。如此推算下去,我們便發(fā)現(xiàn)一個(gè)規(guī)律:
時(shí)間(月)初生兔子(對(duì))成熟兔子(對(duì))兔子總數(shù)(對(duì))22
有一些實(shí)驗(yàn)的試驗(yàn)點(diǎn)只能取整數(shù),不可能是0.618的倍數(shù),也有的實(shí)驗(yàn)預(yù)先規(guī)定了實(shí)驗(yàn)的總次數(shù),這個(gè)時(shí)候運(yùn)用分?jǐn)?shù)法比0.618法更方便。這個(gè)數(shù)值稱為黃金分割比,它正好是方程式x2+x-1=0的一個(gè)根利用這個(gè)數(shù)列,建立起的分?jǐn)?shù)實(shí)驗(yàn)數(shù)據(jù)如表2所示分?jǐn)?shù)法的具體使用例子1:卡那霉素發(fā)酵液生物測(cè)定,當(dāng)培養(yǎng)溫度為37±1度時(shí),培養(yǎng)時(shí)間在16小時(shí)以上,為縮短培養(yǎng)時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍定在29<T≤50度,精確度要求±1度。由給出的條件可知,測(cè)量溫度應(yīng)以整數(shù)溫度為宜,因此用分?jǐn)?shù)法安排實(shí)驗(yàn)。中間試驗(yàn)點(diǎn)共有20個(gè),見圖3先選第1個(gè)試驗(yàn)點(diǎn)13/21即42度處,第2個(gè)試驗(yàn)點(diǎn)選在與第一個(gè)試驗(yàn)點(diǎn)對(duì)稱的8/13試驗(yàn)點(diǎn)即37度處,如第1個(gè)試驗(yàn)點(diǎn)比第2個(gè)試驗(yàn)點(diǎn)用時(shí)少,則去掉8號(hào)以下的溫度區(qū)間,然后在8號(hào)至21號(hào)新含優(yōu)區(qū)間內(nèi)找1點(diǎn)的對(duì)稱點(diǎn)為16號(hào)3點(diǎn),經(jīng)比較1點(diǎn)培養(yǎng)時(shí)間比3點(diǎn)短,去掉16號(hào)以上的溫度區(qū)間,再找1點(diǎn)的對(duì)稱點(diǎn)位4點(diǎn),經(jīng)過(guò)比較試驗(yàn),1點(diǎn)好于4點(diǎn),把含優(yōu)區(qū)間縮小至11號(hào)至16號(hào)區(qū)間,再找到1號(hào)的對(duì)稱區(qū)間5號(hào)點(diǎn),經(jīng)過(guò)試驗(yàn)確定試驗(yàn)溫度42-43度較好,只需要8-9小時(shí)培養(yǎng)時(shí)間。分?jǐn)?shù)法的具體使用例子2:選擇一個(gè)電阻,調(diào)試電器設(shè)備的線路。調(diào)試著手里只有幾種阻值不等的電阻,阻值分別為0.5,1.0,1.3,2.0,3.0,5.0,5.5(千歐)等七種,要求優(yōu)選一個(gè)合適的電阻。首先把這些電阻由小到大順序排列并編號(hào)如下圖4。阻值(KΩ)0.51.01.32.03.05.05.5排列012345678為了使試驗(yàn)點(diǎn)適于分?jǐn)?shù)法的某一分?jǐn)?shù)值,我們?cè)谠撆帕袃啥嗽黾犹擖c(diǎn),(0),(8),這樣第一個(gè)試驗(yàn)點(diǎn)就可以選在(5)這個(gè)點(diǎn)了,第二個(gè)試驗(yàn)點(diǎn)選在(5)的對(duì)稱點(diǎn)(3)這個(gè)點(diǎn),如此下去就可以找到較好得點(diǎn)。問題1?如果是9個(gè)實(shí)驗(yàn)數(shù)據(jù)咋辦?問題2?如果是19個(gè)實(shí)驗(yàn)數(shù)據(jù)咋辦?1.1.4均分法、對(duì)分法、0.618法、分?jǐn)?shù)法的精確度從一次試驗(yàn)的結(jié)果就可以判斷效果的好壞并把存優(yōu)范圍縮小。如檢查導(dǎo)線何處斷路,管道何處堵塞或斷裂,蒸饅頭放多少堿既不酸又不黃都屬于這種情況。在這種情況下可采用對(duì)分法。
對(duì)分法每做一次試驗(yàn)可以把存優(yōu)范圍縮短一半,n次試驗(yàn)后范圍縮短為原來(lái)因素范圍的(0.5)n,比黃金分割法要快。但并不是所有的問題都能采用對(duì)分法。
有人證明了,在不能采用對(duì)分法的情況下,黃金分割法是最好的對(duì)分法:案例1查找輸電線路故障這種操作比較簡(jiǎn)單,選試點(diǎn)的方法是單一的選取中點(diǎn)。這一類試驗(yàn)問題的特點(diǎn)是有已知的試驗(yàn)標(biāo)準(zhǔn),且能根據(jù)一次試驗(yàn)的結(jié)果確定下次試驗(yàn)的選擇方向。均分法:均分法是把含優(yōu)區(qū)間均勻分成若干等分,并在每一份上進(jìn)行試驗(yàn),同時(shí)對(duì)各分點(diǎn)的實(shí)驗(yàn)結(jié)果進(jìn)行比較,選出極限值。n均分法0.618法分?jǐn)?shù)法平分法Ln=n+1Ln=1/(0.618)nLn=Fn+1Ln=2n121.61822894755256141584398716384202115127177111048576四種方法的搜索精度對(duì)比,可見均分法搜索效率最低,平分法(對(duì)分法)最高1.2分批試驗(yàn)法前面1.1介紹的幾種優(yōu)選法都屬于序貫試驗(yàn)法,是根據(jù)前面的試驗(yàn)結(jié)果再安排后面的試驗(yàn),其優(yōu)點(diǎn)是總試驗(yàn)次數(shù)很少。但是,在有些情況下做完一個(gè)試驗(yàn)要較長(zhǎng)時(shí)間才能得到試驗(yàn)結(jié)果,這樣采用序貫試驗(yàn)法要很長(zhǎng)時(shí)間才能最終完成試驗(yàn)。另外,在有些試驗(yàn)中,做一個(gè)實(shí)驗(yàn)的費(fèi)用和做幾個(gè)試驗(yàn)的費(fèi)用相差無(wú)幾,此時(shí)我們也希望同時(shí)做幾個(gè)試驗(yàn)以節(jié)省費(fèi)用。有時(shí)為了提高試驗(yàn)結(jié)果的可比性,也要求在同一條件下同時(shí)完成若干個(gè)試驗(yàn)。在上述這些情況下,就要采用分批試驗(yàn)法。分批試驗(yàn)法可分為均分分批試驗(yàn)法和比例分割分批試驗(yàn)法兩種。1.2.1均分分批試驗(yàn)法
分批試驗(yàn)法就是每批試驗(yàn)均勻地安排在試驗(yàn)范圍內(nèi)。例如,每批做四個(gè)試驗(yàn),我們可以將試驗(yàn)范圍均勻地分為五份,在其四個(gè)分點(diǎn)想x1,x2,x3,x4處做四個(gè)試驗(yàn)。然后同時(shí)比較四個(gè)試驗(yàn)結(jié)果,如果x3好,則去掉小于x2和大于x4的部分。然后在留下的x2–x4范圍內(nèi)再均分六等分,在未做過(guò)試驗(yàn)的四個(gè)分點(diǎn)上再做四個(gè)試驗(yàn),這樣進(jìn)行下去,就可獲得最佳點(diǎn)。用這個(gè)方法第一批試驗(yàn)后范圍縮小為2/5,以后每批試驗(yàn)后都縮小為前次范圍的1/3。見圖。
圖每批做四個(gè)試驗(yàn)的均分分批法示意圖
對(duì)于一批做偶數(shù)個(gè)試驗(yàn)的情況,均可仿照上述方法安排試驗(yàn)。假設(shè)做2n個(gè)試驗(yàn)(n為任意整數(shù)),則可將試驗(yàn)范圍均分為2n+1份,在2n個(gè)分點(diǎn)x1,x2,…,x2n上做2n個(gè)試驗(yàn),如果xi最好,則保留(xi-1-xi+1)部分作為新的試驗(yàn)范圍,將其均分為2n+2份,在未做過(guò)試驗(yàn)的2n個(gè)分點(diǎn)上在做試驗(yàn),這樣繼續(xù)下去,就能找到最佳點(diǎn)。用這個(gè)方法,第一批試驗(yàn)后范圍縮小為2/(2n+1),以后每批試驗(yàn)都是將2n個(gè)試驗(yàn)點(diǎn)均勻地安排在前一批試驗(yàn)好點(diǎn)的兩旁,試驗(yàn)后范圍縮小為前批試驗(yàn)范圍的1/(n+1)。1.2.2比例分割分批試驗(yàn)法
這種方法是將試驗(yàn)點(diǎn)按比例地安排在試驗(yàn)范圍內(nèi)。當(dāng)每批做偶數(shù)個(gè)試驗(yàn)時(shí),我們可采用
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/IEC 23008-2:2025 EN Information technology - High efficiency coding and media delivery in heterogeneous environments - Part 2: High efficiency video coding
- 精簡(jiǎn)年終述職報(bào)告
- 對(duì)供應(yīng)商的管理
- 保險(xiǎn)行業(yè)未來(lái)發(fā)展前景
- 2025年六班級(jí)班主任工作方案
- 2025年社區(qū)防汛搶險(xiǎn)活動(dòng)方案
- 畢業(yè)論文答辯結(jié)構(gòu)化展示
- 2025年幼兒園母親節(jié)方案
- 山東建筑大學(xué)《第二外國(guó)語(yǔ)(3)》2023-2024學(xué)年第二學(xué)期期末試卷
- 北京中醫(yī)藥大學(xué)東方學(xué)院《JavaWeb程序設(shè)計(jì)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 慢性心功能不全的護(hù)理查房
- 車輛維修質(zhì)量保證措施
- 毛中特第一章毛澤東思想及其歷史地位課件
- 浙江大學(xué)《普通化學(xué)》(第6版)筆記和課后習(xí)題(含考研真題)詳解
- 國(guó)際貿(mào)易理論與實(shí)務(wù)(天津財(cái)經(jīng)大學(xué))知到章節(jié)答案智慧樹2023年
- 教學(xué)防滅火新技術(shù) 公開課比賽一等獎(jiǎng)
- 電磁學(xué)知到章節(jié)答案智慧樹2023年天津大學(xué)
- EIM Book 1 Unit 10 Don't give up單元知識(shí)要點(diǎn)
- 四年級(jí)數(shù)學(xué)下冊(cè)教案(先學(xué)后教當(dāng)堂訓(xùn)練)
- 改革開放與新時(shí)代智慧樹知到答案章節(jié)測(cè)試2023年同濟(jì)大學(xué)
- 敦煌的藝術(shù)智慧樹知到答案章節(jié)測(cè)試2023年
評(píng)論
0/150
提交評(píng)論