版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年廈門城市職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.設(shè)直線y=kx與橢圓x24+y23=1相交于A、B兩點,分別過A、B向x軸作垂線,若垂足恰為橢圓的兩個焦點,則k等于()A.±32B.±23C.±12D.±2答案:將直線與橢圓方程聯(lián)立,y=kxx24+y23=1,化簡整理得(3+4k2)x2=12(*)因為分別過A、B向x軸作垂線,垂足恰為橢圓的兩個焦點,故方程的兩個根為±1.代入方程(*),得k=±32故選A.2.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為
______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡得1+loga2=0,解得a=12故為:123.若A(-2,3),B(3,-2),C(,m)三點共線
則m的值為()
A.
B.-
C.-2
D.2答案:A4.在測量某物理量的過程中,因儀器和觀察的誤差,使得n次測量分別得到a1,a2,…,an,共n個數(shù)據(jù).我們規(guī)定所測量的“量佳近似值”a是這樣一個量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。来艘?guī)定,從a1,a2,…,an推出的a=______.答案:∵所測量的“量佳近似值”a是與其他近似值比較,a與各數(shù)據(jù)的差的平方和最小.根據(jù)均值不等式求平方和的最小值知這些數(shù)的底數(shù)要盡可能的接近,∴a是所有數(shù)字的平均數(shù),∴a=a1+a2+…+ann,故為:a1+a2+…+ann5.在極坐標系中,直線l經(jīng)過圓ρ=2cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標為______.答案:由ρ=2cosθ可知此圓的圓心為(1,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標方程為ρcosθ=1,所以直線l與極軸的交點的極坐標為(1,0).故為:(1,0).6.如圖,AB是⊙O的直徑,P是AB延長線上的一點.過P作⊙O的切線,切點為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個含有30°角的三角形,∴BC=12AB,三角形BPC是一個等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:47.點(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(
)
A.-1<a<1
B.0<a<1
C.a(chǎn)<-1或a>1
D.a(chǎn)=±1答案:A8.已知=(1,2),=(x,1),當(dāng)(+2)⊥(2-)時,實數(shù)x的值為(
)
A.6
B.2
C.-2
D.或-2答案:D9.已知拋物線和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,拋物線的頂點為坐標原點,則雙曲線的標準方程是______.答案:設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點為F(1,0)由題意知雙曲線的焦點為F1(-1,0),F(xiàn)2(1,0)∴c=1對于雙曲線,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.10.若實數(shù)X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D11.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)過點(3,8),求f(4)=______.答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(3,8)代入得8=a3解得a=2,所以y=2x,則f(4)=42=16故為16.12.點P(2,5)關(guān)于直線x+y=1的對稱點的坐標是(
)。答案:(-4,-1)13.質(zhì)地均勻的正四面體玩具的4個面上分別刻著數(shù)字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.
(1)求與桌面接觸的4個面上的4個數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數(shù)均為奇數(shù),概率為P1=(12)4=116②4個數(shù)中有3個奇數(shù),另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.14.已知直線l的參數(shù)方程為x=12ty=22+32t(t為參數(shù)),若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-π4)
(1)求直線l的傾斜角;
(2)若直線l與曲線C交于A,B兩點,求|AB|.答案:(1)直線參數(shù)方程可以化x=tcos60°y=22+tsin60°,根據(jù)直線參數(shù)方程的意義,這條經(jīng)過點(0,22),傾斜角為60°的直線.(2)l的直角坐標方程為y=3x+22,ρ=2cos(θ-π4)的直角坐標方程為(x-22)2+(y-22)2=1,所以圓心(22,22)到直線l的距離d=64,∴|AB|=102.15.下面哪個不是算法的特征()A.抽象性B.精確性C.有窮性D.唯一性答案:根據(jù)算法的概念,可知算法具有抽象性、精確性、有窮性等,同一問題,可以有不同的算法,故選D.16.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯,輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.17.如圖是一個方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時以每一分鐘一格的速度向東、西、南、北四個方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個方向行走的概率均為q
(1)p和q的值;
(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時間內(nèi)可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)
設(shè)在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為37230418.已知||=3,A、B分別在x軸和y軸上運動,O為原點,則動點P的軌跡方程是()
A.
B.
C.
D.答案:B19.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…當(dāng)n∈N*時,試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用數(shù)學(xué)歸納法給予證明:(1)當(dāng)n=1時,由已知得原式成立;(2)假設(shè)當(dāng)n=k時,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,當(dāng)n=k+1時,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1時,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.20.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據(jù)橢圓的定義,△AF1B的周長為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=121.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()
A.
B.
C.
D.
答案:A22.函數(shù)y=a|x|(a>1)的圖象是()
A.
B.
C.
D.
答案:B23.甲、乙兩人投籃,投中的概率分別為0.6,0.7,若兩人各投2次,則兩人都投中1次的概率為______.答案:兩人都投中1次的概率為C210.6×0.4×C210.7×0.3=0.2016故為:0.201624.在極坐標系中與圓ρ=4sinθ相切的一條直線的方程為()
A.ρcosθ=2
B.ρsinθ=2
C.ρ=4sin(θ+)
D.ρ=4sin(θ-)答案:A25.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).26.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標是()
A.(-,-,-)
B.(,-,-)
C.(-,-,)
D.(,,)答案:A27.設(shè)定義域為[x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個端點分別為A、B,點O為坐標原點,點M是C上任意一點,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標準k下線性近似”是指|MN|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:
①A、B、N三點共線;
②直線MN的方向向量可以為a=(0,1);
③“函數(shù)y=5x2在[0,1]上可在標準1下線性近似”;
④“函數(shù)y=5x2在[0,1]上可在標準54下線性近似”.
其中所有正確結(jié)論的番號為______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的橫坐標為λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y軸∴直線MN的方向向量可以為a=(0,1),故②成立對于函數(shù)y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),從而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函數(shù)y=5x2在[0,1]上可在標準54下線性近似”,故④成立,③不成立,故為:①②④28.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實根一個小于1,另一個大于1,求實數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.29.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:130.如圖,在半徑為7的⊙O中,弦AB,CD相交于點P,PA=PB=2,PD=1,則圓心O到弦CD的距離為______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP?1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半徑為7,則圓心O到弦CD的距離為d=r2-(CD2)2=7-(52)2=32.故為:32.31.已知兩點P(4,-9),Q(-2,3),則直線PQ與y軸的交點分有向線段PQ的比為______.答案:直線PQ與y軸的交點的橫坐標等于0,由定比分點坐標公式可得0=4+λ(-2)1+λ,解得λ=2,故直線PQ與y軸的交點分有向線段PQ的比為
λ=2,故為:2.32.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.33.設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因為0<a<1時,y=logax為減函數(shù),所以p>m>n故選D34.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點共圓.35.函數(shù)y=x2x4+9(x≠0)的最大值為______,此時x的值為______.答案:y=x2x4+9=1x2+9x2≤129=16,當(dāng)且僅當(dāng)x2=9x2,即x=±3時取等號.故為:16,
±336.(理)
設(shè)O為坐標原點,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點Q在直線OP上運動,則當(dāng)QA?QB取得最小值時,點Q的坐標為______.答案:∵OP=(1,1,2),點Q在直線OP上運動,設(shè)OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當(dāng)λ=43時,QA?QB取得最小值.此時Q的坐標為(43,43,83)故為:(43,43,83)37.若矩陣M=1101,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(x0,y0),(x,y)是所得的直線上一點,[1
1][x]=[x0][0
1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.38.當(dāng)a>0時,不等式組的解集為(
)。答案:當(dāng)a>時為;當(dāng)a=時為{};當(dāng)0<a<時為[a,1-a]39.從A處望B處的仰角為α,從B處望A處的俯角為β,則α、β的關(guān)系為()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:從點A看點B的仰角與從點B看點A的俯角互為內(nèi)錯角,大小相等.仰角和俯角都是水平線與視線的夾角,故α=β.故選:B.40.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點E,過點E作⊙O的切線交AC于點D,交AB的延長線于點P.問:PD與AC是否互相垂直?請說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.41.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.42.在數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時,第一步應(yīng)驗證()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C43.要從已編號(1~60)的60枚最新研制的某型導(dǎo)彈中隨機抽取6枚來進行發(fā)射試驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號可能是()
A.5、10、15、20、25、30
B.3、13、23、33、43、53
C.1、2、3、4、5、6
D.2、4、8、16、32、48答案:B44.柱坐標(2,,5)對應(yīng)的點的直角坐標是
。答案:()解析:∵柱坐標(2,,5),且,2,∴對應(yīng)直角坐標是()45.在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.46.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過點A(2,3),則過兩點P1(a1,b1),P2(a2,b2)的直線方程為______.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點,∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點P1(a1,b1),P2(a2,b2)的坐標都適合方程2x+3y+1=0,∴兩點(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.47.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.48.國旗上的正五角星的每一個頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.49.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A50.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.第2卷一.綜合題(共50題)1.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.2.復(fù)數(shù)1+i(i為虛數(shù)單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.3.(幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
⊙O于D,∠MDA=45°,則∠DCB=______.答案:連接BD,∵AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故為:135°.4.已知點P為△ABC所在平面上的一點,且,其中t為實數(shù),若點P落在△ABC的內(nèi)部,則t的取值范圍是()
A.
B.
C.
D.答案:D5.現(xiàn)有以下兩項調(diào)查:①某校高二年級共有15個班,現(xiàn)從中選擇2個班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進行調(diào)查.完成①、②這兩項調(diào)查宜采用的抽樣方法依次是()A.簡單隨機抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡單隨機抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個班中選擇2個班,檢查其清潔衛(wèi)生狀況;總體個數(shù)不多,而且差異不大,故可采用簡單隨機抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項調(diào)查宜采用的抽樣方法依次是簡單隨機抽樣法,分層抽樣法故選A6.已知圖所示的矩形,其長為12,寬為5.在矩形內(nèi)隨同地措施1000顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為550顆.則可以估計出陰影部分的面積約為______.答案:∵矩形的長為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.7.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標為______.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).8.函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù))對任意實數(shù)x、y,都有()
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)答案:A9.一段雙行道隧道的橫截面邊界由橢圓的上半部分和矩形的三邊組成,如圖所示.一輛卡車運載一個長方形的集裝箱,此箱平放在車上與車同寬,車與箱的高度共計4.2米,箱寬3米,若要求通過隧道時,車體不得超過中線.試問這輛卡車是否能通過此隧道,請說明理由.答案:建立如圖所示的坐標系,則此隧道橫截面的橢圓上半部分方程為:x225+y24=1,y≥0.令x=3,則代入橢圓方程,解得y=1.6,因為1.6+3=4.6>4.2,所以,卡車能夠通過此隧道.10.設(shè)集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.11.點M的直角坐標為(,1,-2),則它的柱坐標為()
A.(2,,2)
B.(2,,2)
C.(2,,-2)
D.(2,-,-2)答案:C12.已知偶函數(shù)f(x)的圖象與x軸有五個公共點,那么方程f(x)=0的所有實根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對稱∴其圖象與x軸有五個交點也關(guān)于y軸對稱其中一個為0.另四個關(guān)于y軸對稱.∴方程f(x)=0的所有實根之和為0故為:0.13.過拋物線y2=2px(p>0)的焦點F的直線與拋物線相交于M,N兩點,自M,N向準線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C14.把矩陣變?yōu)楹?,與對應(yīng)的值是()
A.
B.
C.
D.答案:C15.平面向量的夾角為,則等于(
)
A.
B.3
C.7
D.79答案:A16.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因為函數(shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項的系數(shù)為負?2k-4<0?k<2.故為:C17.若方程Ax2+By2=1表示焦點在y軸上的雙曲線,則A、B滿足的條件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C18.直線2x-3y+10=0的法向量的坐標可以是答案:C19.過點(-1,3)且垂直于直線x-2y+3=0的直線方程為(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A20.命題:“若a>0,則a2>0”的否命題是()A.若a2>0,則a>0B.若a<0,則a2<0C.若a≤0,則a2≤0D.若a≤0,則a2≤0答案:否命題是將條件,結(jié)論同時否定,∴若a>0,則a2>0”的否命題是若a≤0,則a2≤0,故為:C21.袋中裝著標有數(shù)字1,2,3,4的小球各3個,從袋中任取3個小球,每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字互不相同的概率;
(Ⅱ)用X表示取出的3個小球上所標的最大數(shù)字,求隨機變量X的分布列和均值.答案:(I)由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)C123,滿足條件的事件是取出的3個小球上的數(shù)字互不相同,共有C43C31C31C31記“一次取出的3個小球上的數(shù)字互不相同”的事件記為A,∴P(A)=C34?C13?C13?C13C312=2755.(II)由題意X所有可能的取值為:1,2,3,4.P(X=1)=1C312=1220;P(X=2)=C23?C13+C23?C13+C33C312=19220;P(X=3)=C26?C13+C16?C23+C33C312=64220=1655;P(X=4)=C29?C13+C19?C23+C33C312=136220=3455.∴隨機變量X的分布列為∴隨機變量X的期望為EX=1×1220+2×19220+3×1655+4×3455=15544.22.已知橢圓(a>b>0)的焦點分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△ABF2的周長為()
A.10
B.12
C.16
D.20答案:D23.在極坐標系中,圓ρ=-2cosθ的圓心的極坐標是()
A.(1,)
B.(1,-)
C.(1,0)
D.(1,π)答案:D24.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos1425.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,若f(c)=0,且0<x<c時,f(x)>0
(1)證明:1a是f(x)的一個根;(2)試比較1a與c的大小.答案:證明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,f(x)=0的兩個根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個根.(2)假設(shè)1a<c,又1a>0由0<x<c時,f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個根不相等∴1a≠c,只有1a>c26.設(shè)△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故為:327.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.28.(選做題)在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知射線θ=與曲線(t為參數(shù))相較于A,B來兩點,則線段AB的中點的直角坐標為(
)。答案:(2.5,2.5)29.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為______.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13230.若命題“p∧q”為假,且“¬p”為假,則()A.p或q為假B.q假C.q真D.不能判斷q的真假答案:因為“?p”為假,所以p為真;又因為“p∧q”為假,所以q為假.對于A,p或q為真,對于C,D,顯然錯,故選B.31.如圖,平面內(nèi)有三個向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.32.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()
A.α-
B.-α
C.α-
D.-α答案:D33.設(shè)隨機變量X~N(μ,δ2),且p(X≤c)=p(X>c),則c的值()
A.0
B.1
C.μ
D.μ答案:C34.圓心在原點且圓周被直線3x+4y+15=0分成1:2兩部分的圓的方程為
______.答案:如圖,因為圓周被直線3x+4y+15=0分成1:2兩部分,所以∠AOB=120°.而圓心到直線3x+4y+15=0的距離d=1532+42=3,在△AOB中,可求得OA=6.所以所求圓的方程為x2+y2=36.故為:x2+y2=3635.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.36.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為
______.答案:如圖,過雙曲線的頂點A、焦點F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為337.經(jīng)過點M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標軸的截距不為0時,設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標軸的截距為0時,設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x38.若命題P(n)對n=k成立,則它對n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()
A.P(n)對所有自然數(shù)n都成立
B.P(n)對所有正偶數(shù)n成立
C.P(n)對所有正奇數(shù)n都成立
D.P(n)對所有大于1的自然數(shù)n成立答案:B39.在復(fù)平面上,設(shè)點A,B,C對應(yīng)的復(fù)數(shù)分別為i,1,4+2i,過A、B、C作平行四邊形ABCD,則平行四邊形對角線BD的長為______.答案:∵點A,B,C對應(yīng)的復(fù)數(shù)分別為i,1,4+2i∴A(0,1),B(1,0),C(4,2)設(shè)D(x,y)∴AD=BC=(3,2)∴D(3,3)∴對角線BD的長度是4+9=13故為:1340.以下命題:
①二直線平行的充要條件是它們的斜率相等;
②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;
③平面內(nèi)到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;
④拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.
其中正確命題的標號是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點距離之和等于常數(shù),如這個常數(shù)正好為兩個點的距離,則動點的軌跡是兩點的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.故④正確.故為:②④.41.已知函數(shù)f(x)=2x,x≥01,
x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,
x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.42.某電廠冷卻塔的外形是如圖所示雙曲線的一部分繞其中軸(即雙曲線的虛軸)旋轉(zhuǎn)所成的曲面,其中A、A′是雙曲線的頂點,C、C′是冷卻塔上口直徑的兩個端點,B、B′是下底直徑的兩個端點,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.
(Ⅰ)建立坐標系并寫出該雙曲線方程;
(Ⅱ)求冷卻塔的容積(精確到10m3,塔壁厚度不計,π取3.14).答案:(I)如圖建立直角坐標系xOy,AA′在x軸上,AA′的中點為坐標原點O,CC′與BB′平行于x軸.設(shè)雙曲線方程為x2a2-y2b2=1(a>0,b>0),則a=12AA′=7.又設(shè)B(11,y1),C(9,y2),因為點B、C在雙曲線上,所以有11272-y21b2=1,①9272-y22b2=1,②由題意知y2-y1=20.③由①、②、③得y1=-12,y2=8,b=72.故雙曲線方程為x249-y298=1;(II)由雙曲線方程得x2=12y2+49.設(shè)冷卻塔的容積為V(m3),則V=π∫y2y1x2dy=π∫8-12(12y2+49)dy=π(16y3+49y)|8-12,∴V≈4.25×103(m3).答:冷卻塔的容積為4.25×103(m3).43.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(
)。答案:圓,雙曲線44.已知復(fù)數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個以z為根的實系數(shù)一元二次方程.答案:[解法一]∵復(fù)數(shù)w滿足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個一元二次方程可以是x2-6x+10=0.[解法二]設(shè)w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].45.如圖為某平面圖形用斜二測畫法畫出的直觀圖,則其原來平面圖形的面積是(
)
A.4
B.
C.
D.8
答案:A46.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。47.一個水平放置的平面圖形,其斜二測直觀圖是一個等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+248.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)49.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______
時,方程的解集是有限集;滿足條件______
時,方程的解集是無限集;滿足條件______
時,方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個解時,為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時,方程有無數(shù)組解,方程的解集是無限集;滿足條件
a=0,b≠0
時,方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;
a=0,b≠0.50.用反證法證明命題:“三角形的內(nèi)角至多有一個鈍角”,正確的假設(shè)是()
A.三角形的內(nèi)角至少有一個鈍角
B.三角形的內(nèi)角至少有兩個鈍角
C.三角形的內(nèi)角沒有一個鈍角
D.三角形的內(nèi)角沒有一個鈍角或至少有兩個鈍角答案:B第3卷一.綜合題(共50題)1.已知點A(1,0,-3)和向量AB=(-1,-2,0),則點B的坐標為______.答案:設(shè)B(x,y,z),根據(jù)向量的坐標運算,AB=(x,y,z)
-
(1,0,-3)=(x-1,y,z+3)=(-1,-2,0)∴x=0,y=-2,z=-3.故為:(0,-2,-3).2.兩平行直線5x+12y+3=0與10x+24y+5=0間的距離是
______.答案:∵兩平行直線
ax+by+m=0
與
ax+by+n=0間的距離是|m-n|a2+b2,5x+12y+3=0即10x+24y+6=0,∴兩平行直線5x+12y+3=0與10x+24y+5=0間的距離是|5-6|102+242=1576=126.故為126.3.雙曲線的漸進線方程是3x±4y=0,則雙曲線的離心率等于______.答案:由題意可得,當(dāng)焦點在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53
或54.4.一只袋中裝有2個白球、3個紅球,這些球除顏色外都相同.
(Ⅰ)從袋中任意摸出1個球,求摸到的球是白球的概率;
(Ⅱ)從袋中任意摸出2個球,求摸出的兩個球都是白球的概率;
(Ⅲ)從袋中任意摸出2個球,求摸出的兩個球顏色不同的概率.答案:(Ⅰ)從5個球中摸出1個球,共有5種結(jié)果,其中是白球的有2種,所以從袋中任意摸出1個球,摸到白球的概率為25.
…(4分)(Ⅱ)從袋中任意摸出2個球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個球,摸出的兩個球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個球,摸出的2個球顏色不同的概率為610=35.
…(14分)5.函數(shù)y=a|x|(a>1)的圖象是()
A.
B.
C.
D.
答案:B6.已知f(x)=3mx2-2(m+n)x+n(m≠0)滿足f(0)?f(1)>0,設(shè)x1,x2是方程f(x)=0的兩根,則|x1-x2|的取值范圍為()
A.[,)
B.[,)
C.[,)
D.[,)答案:A7.已知R為實數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點,故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.8.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個單位,向下平移1個單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.9.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A10.在極坐標系中,點(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標系中,點(2
,
π6)化為直角坐標為(3,1),直線ρsinθ=2化為直角坐標方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(2
,
π6)到直線ρsinθ=2的距離1,故為:1.11.某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小球的抽獎箱中,每次取出一球記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6則中一等獎,等于5中二等獎,等于4或3中三等獎.
(1)求中三等獎的概率;
(2)求中獎的概率.答案:(1)設(shè)“中三等獎”為事件A,“中獎”為事件B,從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個小球號碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個小球號相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎的概率為716;(2)兩個小球號碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)兩個小球號碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎的概率為:58.12.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設(shè)正方體的棱長為a,不妨設(shè)a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.13.在極坐標系中,直線l經(jīng)過圓ρ=2cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標為______.答案:由ρ=2cosθ可知此圓的圓心為(1,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標方程為ρcosθ=1,所以直線l與極軸的交點的極坐標為(1,0).故為:(1,0).14.下表是x與y之間的一組數(shù)據(jù),則y關(guān)于x的線性回歸方程
必過點()
x
0
1
2
3
y
1
3
5
7
A.(2,2)
B.(1.5,2)
C.(1,2)
D.(1.5,4)答案:D15.若方程sin2x+4sinx+m=0有實數(shù)解,則m的取值范圍是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D16.甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機取出一個球放入乙袋中,充分混合后,再從乙袋中隨機取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.17.已知向量=(x,1),=(3,6),且⊥,則實數(shù)x的值為()
A.
B.-2
C.2
D.-答案:B18.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(
)。答案:圓,雙曲線19.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時,0<b<1∴a>b20.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A21.若正四面體ABCD的棱長為1,M是AB的中點,則MC
?MD
=______.答案:在正四面體中,因為M是AB的中點,所以CM=12(CA+CB),DM=12(DA+DB),所以CM?DM=12(CA+CB)?12(DA+DB)=14(CA?DA+CB?DA+CA?DB+CB?DB)=14(1×1×cos60°+0+0+1×1×cos60°)=14×1=14.所以MC
?MD
=CM?DM=14.故為:
1
4
.22.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.23.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2324.設(shè)函數(shù)f(x)的定義域為R,如果對任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:3225.若=(2,-3,1),=(2,0,3),=(0,2,2),則?(+)=()
A.4
B.15
C.7
D.3答案:D26.一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點M,拉一條繩子,繞圓臺的側(cè)面一周轉(zhuǎn)到B點,則這條繩子最短長為______cm.答案:畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,且設(shè)扇形的圓心為O.有圖得:所求的最短距離是MB',設(shè)OA=R,圓心角是α,則由題意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.27.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.28.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()
A.0
B.-8
C.2
D.10答案:B29.在復(fù)平面內(nèi),復(fù)數(shù)z=sin2+icos2對應(yīng)的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對應(yīng)的點在第四象限,故選D.30.把函數(shù)y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C31.若非零向量滿足,則()
A.
B.
C.
D.答案:C32.若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(
)
A.
B.
C.
D.答案:B33.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相聯(lián),連線標注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()
A.26
B.24
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2169-2024氘燈光譜輻射照度(200 nm~400 nm)校準規(guī)范
- GB/T 44644.2-2024道路車輛50 Ω阻抗射頻連接系統(tǒng)接口第2部分:測試方法
- 江蘇省泰州市姜堰區(qū)2024-2025學(xué)年七年級上學(xué)期11月期中生物試題(無答案)
- 安徽省亳州市黌學(xué)英才中學(xué)2024-2025學(xué)年七年級上學(xué)期期中生物學(xué)試題(含答案)
- 數(shù)據(jù)中心項目申請報告
- 阜陽師范大學(xué)《運動解剖學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《漢英筆譯二》2022-2023學(xué)年第一學(xué)期期末試卷
- 人教版三年級下冊品德與社會教案
- 福建師范大學(xué)《語言與統(tǒng)計學(xué)入門》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《書法篆刻二》2022-2023學(xué)年第一學(xué)期期末試卷
- 安徽省亳州市黌學(xué)英才中學(xué)2024-2025學(xué)年七年級上學(xué)期期中生物學(xué)試題(含答案)
- 期中綜合檢測(1-4單元)(試題)- 2024-2025學(xué)年二年級上冊數(shù)學(xué)人教版
- 滬粵版初中物理八上八年級上學(xué)期物理期中試卷(解析版)
- 江蘇省蘇州市蘇州工業(yè)園區(qū)蘇州工業(yè)園區(qū)景城學(xué)校2023-2024學(xué)年八年級上學(xué)期期中數(shù)學(xué)試題(解析版)
- 高中挺身式跳遠-教案
- 2024年消防宣傳月知識競賽考試題庫500題(含答案)
- 2024年下半年事業(yè)單位公開考試招聘工作人員報考信息表
- 國開2024年秋《機電控制工程基礎(chǔ)》形考任務(wù)1答案
- 食品安全工作操作流程(5篇)
- 《中華民族大團結(jié)》(初中)-第10課-偉大夢想-共同追求-教案
- 《非計劃性拔管》課件
評論
0/150
提交評論