版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年吉林電子信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.已知AB和CD是曲線(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說(shuō)明它表示什么曲線;
(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個(gè)不相等的實(shí)數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。2.直線y=x-1的傾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A3.一牧場(chǎng)有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設(shè)發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實(shí)驗(yàn)結(jié)果都是相互獨(dú)立的,∴ξ~B(10,0.02),∴由二項(xiàng)分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.1964.若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.5.已知直線經(jīng)過(guò)點(diǎn),傾斜角,設(shè)與圓相交與兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積。答案:2解析:把直線代入得,則點(diǎn)到兩點(diǎn)的距離之積為6.為了調(diào)查上海市中學(xué)生的身體狀況,在甲、乙兩所學(xué)校中各隨意抽取了
100名學(xué)生,測(cè)試引體向上,結(jié)果如下表所示:
(1)甲乙兩校被測(cè)學(xué)生引體向上的平均數(shù)分別是:甲校______個(gè),乙校______個(gè).
(2)若5個(gè)以下(不含5個(gè))為不合格,則甲乙兩校的合格率分別為甲校______
乙校______
(3)若15個(gè)以上(含15個(gè))為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)
(4)用你所學(xué)的統(tǒng)計(jì)知識(shí)對(duì)兩所學(xué)校學(xué)生的身體狀況作一個(gè)比較.你的結(jié)論是______.答案:(1)甲校被測(cè)學(xué)生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測(cè)學(xué)生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些7.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長(zhǎng)為()
A.4
B.2
C.4
D.3答案:A8.下列在曲線上的點(diǎn)是(
)
A.
B.
C.
D.答案:B9.下列有關(guān)相關(guān)指數(shù)R2的說(shuō)法正確的有()
A.R2的值越大,說(shuō)明殘差平方和越小
B.R2越接近1,表示回歸效果越差
C.R2的值越小,說(shuō)明殘差平方和越小
D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A10.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點(diǎn),設(shè)平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.11.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的()
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C12.某廠一批產(chǎn)品的合格率是98%,檢驗(yàn)單位從中有放回地隨機(jī)抽取10件,則計(jì)算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項(xiàng)分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.13.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時(shí),由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根時(shí),-1≤a≤178故為:-1≤a≤17814.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D15.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)的極坐標(biāo)為
______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(diǎn)(-1,1),極坐標(biāo)為(2,3π4).故填:(2,3π4).16.過(guò)拋物線y2=4x的焦點(diǎn)作直線l交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為3,則|AB|等于()A.2B.4C.6D.8答案:由題設(shè)知知線段AB的中點(diǎn)到準(zhǔn)線的距離為4,設(shè)A,B兩點(diǎn)到準(zhǔn)線的距離分別為d1,d2,由拋物線的定義知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故選D.17.化簡(jiǎn)下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC18.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,F(xiàn)為焦點(diǎn),A,B,C為拋物線上的三點(diǎn),且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為_(kāi)_____.答案:設(shè)向量FA,F(xiàn)B,F(xiàn)C的坐標(biāo)分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.19.某企業(yè)甲、乙、丙三個(gè)生產(chǎn)車(chē)間的職工人數(shù)分別為120人,150人,180人,現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中甲車(chē)間有4人,那么此樣本的容量n=______.答案:每個(gè)個(gè)體被抽到的概率等于
4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.20.設(shè)向量a,b,c滿足a+b+c=0,a⊥b,且a,b的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則c的模為_(kāi)_____.答案:∵向量a,b,c滿足a+b+c=0,a⊥b,∴向量a,b,c構(gòu)成一個(gè)直角三角形,如圖∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故為:5.21.某學(xué)校為了解高一男生的百米成績(jī),隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績(jī)的頻率分布直方圖.根據(jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.
答案:第三和第四個(gè)小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績(jī)?cè)赱13,14]內(nèi)的頻率為:0.7,因?yàn)楦鶕?jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.22.如圖所示,已知點(diǎn)P在正方體ABCD—A′B′C′D′的對(duì)角線
BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小;
(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點(diǎn),DA為單位長(zhǎng)度建立空間直角坐標(biāo)系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長(zhǎng)DP交B′D′于H.設(shè)="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因?yàn)閏os〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個(gè)法向量是=(0,1,0).因?yàn)閏os〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.23.如圖,直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED=12,⊙O的半徑為3,求OA的長(zhǎng).答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線;(2)∵BC是圓O切線,且BE是圓O割線,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設(shè)BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).24.某校在檢查學(xué)生作業(yè)時(shí),抽出每班學(xué)號(hào)尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運(yùn)用的抽樣方法是()
A.分層抽樣
B.抽簽抽樣
C.隨機(jī)抽樣
D.系統(tǒng)抽樣答案:D25.已知直線l過(guò)點(diǎn)P(1,0,-1),平行于向量=(2,1,1),平面α過(guò)直線l與點(diǎn)M(1,2,3),則平面α的法向量不可能是()
A.(1,-4,2)
B.(,-1,)
C.(-,-1,-)
D.(0,-1,1)答案:D26.設(shè)向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,則θ=______.答案:若a∥b,則sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故為:π4.27.直線l1過(guò)點(diǎn)P(0,-1),且傾斜角為α=30°.
(I)求直線l1的參數(shù)方程;
(II)若直線l1和直線l2:x+y-2=0交于點(diǎn)Q,求|PQ|.答案:(Ⅰ)直線l1的參數(shù)方程為x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t為參數(shù))
(Ⅱ)將上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根據(jù)t的幾何意義得出|PQ|=|t|=3(3-1)28.等于()
A.a(chǎn)
B.a(chǎn)2
C.a(chǎn)3
D.a(chǎn)4答案:B29.已知點(diǎn)A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點(diǎn)B的坐標(biāo)為_(kāi)_____.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點(diǎn)A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)30.如果e1,e2是平面a內(nèi)所有向量的一組基底,那么()A.若實(shí)數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.空間任一向量可以表示為a=λ1e1+λ2e2,這里λ1,λ2∈RC.對(duì)實(shí)數(shù)λ1,λ2,λ1e1+λ2e2不一定在平面a內(nèi)D.對(duì)平面a中的任一向量a,使a=λ1e1+λ2e2的實(shí)數(shù)λ1,λ2有無(wú)數(shù)對(duì)答案:∵由基底的定義可知,e1和e2是平面上不共線的兩個(gè)向量,∴實(shí)數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0,不是空間任一向量都可以表示為a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示為a=λ1e1+λ2e2的形式,此時(shí)實(shí)數(shù)λ1,λ2有且只有一對(duì),而對(duì)實(shí)數(shù)λ1,λ2,λ1e1+λ2e2一定在平面a內(nèi),故選A.31.設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對(duì)任意自然數(shù)均有xn+1=f(xn),則x2004的值為()
A.1B.2C.4D.5答案:由于函數(shù)f(x)定義如下表:故數(shù)列{xn}滿足:5,2,1,4,5,2,1,…是一個(gè)周期性變化的數(shù)列,周期為:4.∴x2004=x0=5.故選D.32.已知命題p:?x∈R,x2-x+1>0,則命題¬p
是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.33.在對(duì)兩個(gè)變量x,y進(jìn)行線性回歸分析時(shí),有下列步驟:
①對(duì)所求出的回歸直線方程作出解釋?zhuān)?/p>
②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;
③求線性回歸方程;
④求相關(guān)系數(shù);
⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.
如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D34.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標(biāo)是()
A.(-,-,-)
B.(,-,-)
C.(-,-,)
D.(,,)答案:A35.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(12)x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(12)x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤在于______(大前提、小前提、結(jié)論).答案:∵當(dāng)a>1時(shí),函數(shù)是一個(gè)增函數(shù),當(dāng)0<a<1時(shí),指數(shù)函數(shù)是一個(gè)減函數(shù)∴y=ax是增函數(shù)這個(gè)大前提是錯(cuò)誤的,從而導(dǎo)致結(jié)論錯(cuò).故為:大前提.36.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號(hào)依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號(hào)可能是()
A.5,10,15,20,25
B.2,4,8,16,32
C.1,2,3,4,5
D.7,17,27,37,47答案:D37.已知向量=(1,1,-2),=(2,1,),若≥0,則實(shí)數(shù)x的取值范圍為()
A.(0,)
B.(0,]
C.(-∞,0)∪[,+∞)
D.(-∞,0]∪[,+∞)答案:C38.規(guī)定符號(hào)“△”表示一種運(yùn)算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,則函數(shù)f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1對(duì)于x需x≥0,∴對(duì)于f(x)=x+x+1=(x+12)2+34≥1故函數(shù)f(x)的值域?yàn)閇1,+∞)故為:[1,+∞)39.函數(shù)y=ax2+a與(a≠0)在同一坐標(biāo)系中的圖象可能是()
A.
B.
C.
D.
答案:D40.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設(shè)得分為隨機(jī)變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個(gè)數(shù)可能為4,3,2,1個(gè),黑球相應(yīng)個(gè)數(shù)為0,1,2,3個(gè).其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.41.已知兩點(diǎn)P(4,-9),Q(-2,3),則直線PQ與y軸的交點(diǎn)分有向線段PQ的比為_(kāi)_____.答案:直線PQ與y軸的交點(diǎn)的橫坐標(biāo)等于0,由定比分點(diǎn)坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線PQ與y軸的交點(diǎn)分有向線段PQ的比為
λ=2,故為:2.42.如圖,從圓O外一點(diǎn)P引兩條直線分別交圓O于點(diǎn)A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長(zhǎng)等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3543.設(shè)平面α內(nèi)兩個(gè)向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()
A.(-1,-2,5)
B.(-1,1,-1)
C.(1,1,1)
D.(1,-1,-1)答案:B44.已知兩點(diǎn)P1(2,-1)、P2(0,5),點(diǎn)P在P1P2延長(zhǎng)線上,且滿足P1P2=-2PP2,則P點(diǎn)的坐標(biāo)為_(kāi)_____.答案:設(shè)分點(diǎn)P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).45.已知橢圓的焦點(diǎn)為F1,F(xiàn)2,A在橢圓上,B在F1A的延長(zhǎng)線上,且|AB|=|AF2|,則B點(diǎn)的軌跡形狀為()
A.橢圓
B.雙曲線
C.圓
D.兩條平行線答案:C46.在數(shù)列{an}中,a1=1,an+1=2a
n2+an(n∈N*),
(1)計(jì)算a2,a3,a4
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.答案:(1):a2=2a
12+a1=23,a3=2a
22+a2=24,a4=2a
32+a3=25,(2):猜想an=2n+1下面用數(shù)學(xué)歸納法證明這個(gè)猜想.①當(dāng)n=1時(shí),a1=1,命題成立.②假設(shè)n=k時(shí)命題成立,即ak=2k+1當(dāng)n=k+1時(shí)ak+1=2a
k2+ak=2×2k+12+2k+1(把假設(shè)作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對(duì)一切n∈N*均成立.47.某教師出了一份三道題的測(cè)試卷,每道題1分,全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,則全班學(xué)生的平均分為_(kāi)_____分.答案:∵全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:248.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對(duì)于f(x)定義域內(nèi)的任意一個(gè)自變量x1都存在唯一個(gè)個(gè)自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號(hào)是______.答案:根據(jù)題意可知:①f(x)=3lnx,x=1時(shí),lnx沒(méi)有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個(gè)自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當(dāng)x=2kπ+π2時(shí),函數(shù)沒(méi)有倒數(shù),不成立.所以成立的函數(shù)序號(hào)為③故為③49.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個(gè)數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81
243=81×3+0
則324與243的最大公約數(shù)為81又135=81×1+54
81=54×1+27
54=27×2+0則81與135的最大公約數(shù)為27所以,三個(gè)數(shù)324、243、135的最大公約數(shù)為27.另法為所求。50.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-15第2卷一.綜合題(共50題)1.如圖所示,正四面體V—ABC的高VD的中點(diǎn)為O,VC的中點(diǎn)為M.
(1)求證:AO、BO、CO兩兩垂直;
(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)
設(shè)=a,=b,=c,正四面體的棱長(zhǎng)為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.2.設(shè)、、是三角形的邊長(zhǎng),求證:
≥答案:證明見(jiàn)解析解析:證明:由不等式的對(duì)稱(chēng)性,不防設(shè)≥≥,則≥左式-右式≥≥≥03.點(diǎn)P(2,5)關(guān)于直線x+y=1的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(
)。答案:(-4,-1)4.在平面直角坐標(biāo)系xOy中,雙曲線x24-y212=1上一點(diǎn)M,點(diǎn)M的橫坐標(biāo)是3,則M到雙曲線右焦點(diǎn)的距離是______答案:MFd=e=2,d為點(diǎn)M到右準(zhǔn)線x=1的距離,則d=2,∴MF=4.故為45.復(fù)數(shù)z=sin1+icos2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第______象限.答案:z對(duì)應(yīng)的點(diǎn)為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四6.如圖所示,O點(diǎn)在△ABC內(nèi)部,D、E分別是AC,BC邊的中點(diǎn),且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()
A.2
B.
C.3
D.
答案:B7.關(guān)于x的方程x2+4x+k=0有一個(gè)根為-2+3i(i為虛數(shù)單位),則實(shí)數(shù)k=______.答案:由韋達(dá)定理(一元二次方程根與系數(shù)關(guān)系)可得:x1?x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,則k=(-2-3i)(-2+3i)=13故為:138.口袋中裝有三個(gè)編號(hào)分別為1,2,3的小球,現(xiàn)從袋中隨機(jī)取球,每次取一個(gè)球,確定編號(hào)后放回,連續(xù)取球兩次.則“兩次取球中有3號(hào)球”的概率為()A.59B.49C.25D.12答案:每次取球時(shí),出現(xiàn)3號(hào)球的概率為13,則兩次取得球都是3號(hào)求得概率為C22?(13)2=19,兩次取得球只有一次取得3號(hào)求得概率為C12?13?23=49,故“兩次取球中有3號(hào)球”的概率為19+49=59,故選A.9.如圖:在長(zhǎng)方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點(diǎn),且EB=FB=1.
(1)求二面角C-DE-C1的大小;
(2)求異面直線EC1與FD1所成角的大??;
(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點(diǎn)AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個(gè)與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).10.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為_(kāi)_____.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤
122=24,所以xy≤18.當(dāng)且僅當(dāng)x=2yx+2y=1時(shí),即x=12,y=14時(shí),取等號(hào).故為:18.11.經(jīng)過(guò)點(diǎn)M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x12.已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿足()
A.是圓心
B.在圓上
C.在圓內(nèi)
D.在圓外答案:C13.如圖中的陰影部分用集合表示為_(kāi)_____.答案:由已知中陰影部分所表示的集合元素滿足是A的元素且C的元素,或是B的元素”,故陰影部分所表示的集合是(A∪C)∩(CUB)故為:B∪(A∩C)14.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.15.(文)函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是______.答案:f(x)=x+2x≥
22當(dāng)且僅當(dāng)x=2時(shí)取等號(hào)該函數(shù)在(0,2)上單調(diào)遞減,在(2,2]上單調(diào)遞增∴當(dāng)x=2時(shí)函數(shù)取最小值22,x趨近0時(shí),函數(shù)值趨近無(wú)窮大故函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是[22,+∞)故為:[22,+∞)16.從一堆蘋(píng)果中任取5只,稱(chēng)得它們的質(zhì)量為(單位:克):125124121123127,則該樣本標(biāo)準(zhǔn)差s=______(克)(用數(shù)字作答).答案:由題意得:樣本平均數(shù)x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.17.在極坐標(biāo)系中,若等邊三角形ABC(頂點(diǎn)A,B,C按順時(shí)針?lè)较蚺帕校┑捻旤c(diǎn)A,B的極坐標(biāo)分別為(2,π6),(2,7π6),則頂點(diǎn)C的極坐標(biāo)為_(kāi)_____.答案:如圖所示:由于A,B的極坐標(biāo)(2,π6),(2,7π6),故極點(diǎn)O為線段AB的中點(diǎn).故等邊三角形ABC的邊長(zhǎng)為4,AB邊上的高(即點(diǎn)C到AB的距離)OC等于23.設(shè)點(diǎn)C的極坐標(biāo)為(23,π6+π2),即(23,2π3),故為(23,2π3).18.已知曲線,
θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.等腰三角形答案:C19.高二年級(jí)某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級(jí)某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.20.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn).用AB、AD、AA1表示向量MN,則MN=______.答案:∵M(jìn)N=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.21.已知直線3x+2y-3=0和6x+my+1=0互相平行,則它們之間的距離是()
A.
B.
C.
D.答案:B22.已知:關(guān)于x的方程2x2+kx-1=0
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是-1,求另一個(gè)根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無(wú)論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個(gè)不相等的實(shí)數(shù)根.(2)設(shè)2x2+kx-1=0的另一個(gè)根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個(gè)根為12,k的值為1.23.設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.
(1)求a的值及集合A、B;
(2)設(shè)全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.24.下列語(yǔ)句不屬于基本算法語(yǔ)句的是()
A.賦值語(yǔ)句
B.運(yùn)算語(yǔ)句
C.條件語(yǔ)句
D.循環(huán)語(yǔ)句答案:B25.用數(shù)學(xué)歸納法證明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:證明:①n=1時(shí),左邊=2,右邊=2,等式成立;②假設(shè)n=k時(shí),結(jié)論成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2則n=k+1時(shí),等式左邊=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1時(shí),等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立26.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()
A.k1<k2<k3
B.k3<k1<k2
C.k2<k1<k3
D.k3<k2<k1
答案:C27.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.28.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過(guò)定點(diǎn)
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C29.隨機(jī)變量ξ的分布列為k=1、2、3、4,c為常數(shù),則P(<ξ<)的值為()
A.
B.
C.
D.答案:B30.當(dāng)a>0時(shí),設(shè)命題P:函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式x2+ax+1>0對(duì)任意x∈R都成立.若“P且Q”是真命題,則實(shí)數(shù)a的取值范圍是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;∴f′(x)≥0在區(qū)間(1,2)上恒成立,∴1-ax2≥0在區(qū)間(1,2)上恒成立,即a≤x2在區(qū)間(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0對(duì)任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命題,則P且Q都是真命題,故由①②的交集得:0<a≤1,則實(shí)數(shù)a的取值范圍是0<a≤1.故選A.31.某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)促銷(xiāo)活動(dòng),規(guī)定每位顧客從裝有編號(hào)為0,1,2,3四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球記下編號(hào)后放回,連續(xù)取兩次,若取出的兩個(gè)小球號(hào)碼相加之和等于6則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于4或3中三等獎(jiǎng).
(1)求中三等獎(jiǎng)的概率;
(2)求中獎(jiǎng)的概率.答案:(1)設(shè)“中三等獎(jiǎng)”為事件A,“中獎(jiǎng)”為事件B,從四個(gè)小球中有放回的取兩個(gè)共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個(gè)小球號(hào)碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個(gè)小球號(hào)相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎(jiǎng)的概率為716;(2)兩個(gè)小球號(hào)碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個(gè)小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個(gè)小球號(hào)碼相加之和等于5的取法有2種:(2,3),(3,2)兩個(gè)小球號(hào)碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎(jiǎng)的概率為:58.32.函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù))對(duì)任意實(shí)數(shù)x、y,都有()
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)答案:A33.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102034.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復(fù)數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.35.不等式x+x3≥0的解集是(
)。答案:{x|x≥0}36.若a為實(shí)數(shù),,則a等于()
A.
B.-
C.2
D.-2答案:B37.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個(gè),共有100種結(jié)果,滿足條件的事件是抽取20個(gè),∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.38.已知||=2,||=,∠AOB=150°,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)(m,n∈R),則=()
A.
B.
C.
D.答案:B39.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為_(kāi)_____.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.40.在△ABC中,DE∥BC,DE將△ABC分成面積相等的兩部分,那么DE:BC=()
A.1:2
B.1:3
C.
D.1:1答案:C41.若一元二次方程x2+(a-1)x+1-a2=0有兩個(gè)正實(shí)數(shù)根,則a的取值范圍是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C42.已知正三角形的外接圓半徑為63cm,求它的邊長(zhǎng).答案:設(shè)正三角形的邊長(zhǎng)為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長(zhǎng)為18cm.43.設(shè)求證答案:證明略解析:左邊-右邊===
=
∴原不等式成立。證法二:左邊>0,右邊>0?!嘣坏仁匠闪?。44.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為_(kāi)_____.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.45.在空間直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)A(,,),B(,,0),C(
,,),則(
)
A.OA⊥AB
B.AB⊥AC
C.AC⊥BC
D.OB⊥OC答案:C46.向量化簡(jiǎn)后等于()
A.
B.
C.
D.答案:C47.已知正方形的邊長(zhǎng)為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因?yàn)檎叫蔚倪呴L(zhǎng)為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.48.扇形周長(zhǎng)為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設(shè)半徑為r,弧長(zhǎng)為l,則周長(zhǎng)為2r+l=10,面積為s=12lr,因?yàn)?0=2r+l≥22rl,所以rl≤252,所以s≤254故選B49.已知橢圓的中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的三角形的周長(zhǎng)為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長(zhǎng)軸長(zhǎng)為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長(zhǎng)為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.50.在樣本的頻率分布直方圖中,共有11個(gè)小長(zhǎng)方形,若中間一個(gè)長(zhǎng)方形的面積等于其他十個(gè)小長(zhǎng)方形面積的和的14,且樣本容量是160,則中間一組的頻數(shù)為()A.32B.0.2C.40D.0.25答案:設(shè)間一個(gè)長(zhǎng)方形的面積S則其他十個(gè)小長(zhǎng)方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數(shù)為160×0.2=32故選A第3卷一.綜合題(共50題)1.乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展開(kāi)式中,一共有多少項(xiàng)?答案:因?yàn)椋簭牡谝粋€(gè)括號(hào)中選一個(gè)字母有3種方法,從第二個(gè)括號(hào)中選一個(gè)字母有4種方法,從第三個(gè)括號(hào)中選一個(gè)字母有5種方法.故根據(jù)乘法計(jì)數(shù)原理可知共有N=3×4×5=60(項(xiàng)).2.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()
A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角
B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角
C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角
D.以上都不對(duì)答案:B3.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實(shí)數(shù)m為()
A.-2
B.2
C.-
D.不存在答案:A4.某校高三有1000個(gè)學(xué)生,高二有1200個(gè)學(xué)生,高一有1500個(gè)學(xué)生.現(xiàn)按年級(jí)分層抽樣,調(diào)查學(xué)生的視力情況,若高一抽取了75人,則全校共抽取了
______人.答案:∵高三有1000個(gè)學(xué)生,高二有1200個(gè)學(xué)生,高一有1500個(gè)學(xué)生.∴本校共有學(xué)生1000+1200+1500=3700,∵按年級(jí)分層抽,高一抽取了75人,∴每個(gè)個(gè)體被抽到的概率是751500=120,∴全校要抽取120×3700=185,故為:185.5.已知隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,),則E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A6.已知正數(shù)x,y,z滿足5x+4y+3z=10.
(1)求證:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根據(jù)柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因?yàn)?x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根據(jù)均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,當(dāng)且僅當(dāng)x2=y2+z2時(shí),等號(hào)成立.根據(jù)柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,當(dāng)且僅當(dāng)x5=y4=z3時(shí),等號(hào)成立.綜上,9x2+9y2+z2≥2?32=18.7.直線l與拋物線y2=2x相交于A、B兩點(diǎn),O為拋物線的頂點(diǎn),若OA⊥OB.證明:直線l過(guò)定點(diǎn).答案:證明:設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2)(I)當(dāng)直線l有存在斜率時(shí),設(shè)直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&
y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過(guò)定點(diǎn)(2,0)(11分)(II)當(dāng)直線l不存在斜率時(shí),設(shè)它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過(guò)定點(diǎn)(2,0)綜合(1)(2)可知,滿足條件的直線過(guò)定點(diǎn)(2,0).8.若關(guān)于x的一元二次實(shí)系數(shù)方程x2+px+q=0有一個(gè)根為1+i(i是虛數(shù)單位),則p+q的值是()
A.-1
B.0
C.2
D.-2答案:B9.直線(t為參數(shù))的傾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D10.從⊙O外一點(diǎn)P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點(diǎn).求證:ACBC=ADBD.
答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.11.已知點(diǎn)E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點(diǎn)E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因?yàn)辄c(diǎn)E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個(gè)平行四邊形的起點(diǎn)為A的對(duì)角線上,又平行四邊形對(duì)角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.12.某學(xué)生離家去學(xué)校,由于怕遲到,所以一開(kāi)始就跑步,等跑累了再走余下的路程.
在如圖中縱軸表示離學(xué)校的距離,橫軸表示出發(fā)后的時(shí)間,則如圖中的四個(gè)圖形中較符合該學(xué)生走法的是()A.
B.
C.
D.
答案:由題意可知:由于怕遲到,所以一開(kāi)始就跑步,所以剛開(kāi)始離學(xué)校的距離隨時(shí)間的推移應(yīng)該相對(duì)較快.而等跑累了再走余下的路程,則說(shuō)明離學(xué)校的距離隨時(shí)間的推移在后半段時(shí)間應(yīng)該相對(duì)較慢.所以適合的圖象為:故選B.13.算法的有窮性是指()A.算法必須包含輸出B.算法中每個(gè)操作步驟都是可執(zhí)行的C.算法的步驟必須有限D(zhuǎn).以上說(shuō)法均不正確答案:一個(gè)算法必須在有限步內(nèi)結(jié)束,簡(jiǎn)單的說(shuō)就是沒(méi)有死循環(huán)即算法的步驟必須有限故選C.14.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C15.化簡(jiǎn)5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b16.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C17.已知雙曲線的兩個(gè)焦點(diǎn)為F1(-,0),F2(,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()
A.
B.
C.
D.答案:C18.若方程Ax2+By2=1表示焦點(diǎn)在y軸上的雙曲線,則A、B滿足的條件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C19.已知一個(gè)幾何體是由上下兩部分構(gòu)成的一個(gè)組合體,其三視圖如圖所示,則這個(gè)組合體的上下兩部分分別是(
)答案:A20.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標(biāo)為()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A21.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.22.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無(wú)法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.23.隨機(jī)變量ξ的分布列為
ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.24.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為_(kāi)_____.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.25.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;
11.26.已知,求證:答案:證明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等號(hào)成立的條件分別為,,故不能同時(shí)成立,從而.27.已知橢圓的中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的三角形的周長(zhǎng)為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長(zhǎng)軸長(zhǎng)為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長(zhǎng)為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.28.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()
A.a(chǎn)=b,b=a
B.a(chǎn)=c,b=a,c=b
C.a(chǎn)=c,b=a,c=a
D.c=a,a=b,b=c答案:D29.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),∴a12=12,?a=14.故選D.30.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個(gè)數(shù)為(
)
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.無(wú)窮多個(gè)答案:C31.一個(gè)盒子裝有10個(gè)紅、白兩色同一型號(hào)的乒乓球,已知紅色乒乓球有3個(gè),若從盒子里隨機(jī)取出3個(gè)乒乓球,則其中含有紅色乒乓球個(gè)數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個(gè)數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故為:910.32.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當(dāng)施化肥量為50kg時(shí),預(yù)計(jì)小麥產(chǎn)量為_(kāi)_____kg.答案:根據(jù)回歸方程為y=250+4x,當(dāng)施化肥量為50kg,即x=50kg時(shí),y=250+4x=250+200=450kg故為:45033.用秦九韶算法求多項(xiàng)式f(x)=8x7+5x6+3x4+2x+1,當(dāng)x=2時(shí)的值.答案:根據(jù)秦九韶算法,把多項(xiàng)式改寫(xiě)成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當(dāng)x=2時(shí),多項(xiàng)式的值為1397.34.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域?yàn)開(kāi)_____.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].35.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.36.若a1-i=1-bi,其中a,b都是實(shí)數(shù),i是虛數(shù)單位,則|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故為:5.37.已知當(dāng)拋物線型拱橋的頂點(diǎn)距水面2米時(shí),量得水面寬8米.當(dāng)水面升高1米后,水面寬度是______米.答案:由題意,建立如圖所示的坐標(biāo)系,拋物線的開(kāi)口向下,設(shè)拋物線的標(biāo)準(zhǔn)方程為x2=-2py(p>0)∵頂點(diǎn)距水面2米時(shí),量得水面寬8米∴點(diǎn)(4,-2)在拋物線上,代入方程得,p=4∴x2=-8y當(dāng)水面升高1米后,y=-1代入方程得:x=±22∴水面寬度是42米故為:4238.若一元二次方程ax2+2x+1=0有一個(gè)正根和一個(gè)負(fù)根,則有
A.a(chǎn)<0
B.a(chǎn)>0
C.a(chǎn)<-1
D.a(chǎn)>1答案:A39.用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)正確的是()
A.假設(shè)至少有一個(gè)鈍角
B.假設(shè)沒(méi)有一個(gè)鈍角
C.假設(shè)至少有兩個(gè)鈍角
D.假設(shè)沒(méi)有一個(gè)鈍角或至少有兩個(gè)鈍角答案:C40.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的定義知:自變量取唯一值時(shí),因變量(函數(shù))有且只有唯一值與其相對(duì)應(yīng).∴從圖象上看,任意一條與
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年亞光PVC透明片項(xiàng)目投資價(jià)值分析報(bào)告
- 代售票券合同范例
- 陜西師范大學(xué)《影像雕塑》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西師范大學(xué)《經(jīng)濟(jì)數(shù)學(xué)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 崗位外聘合同范例
- 2024年端子焊接氖燈項(xiàng)目可行性研究報(bào)告
- 2024年電腦點(diǎn)焊機(jī)項(xiàng)目可行性研究報(bào)告
- 工程門(mén)驗(yàn)收合同范例
- 沙盤(pán)模型制作合同范例
- 2024年封底漆項(xiàng)目可行性研究報(bào)告
- 美國(guó)文學(xué)概論智慧樹(shù)知到期末考試答案章節(jié)答案2024年吉林師范大學(xué)
- 模擬電子技術(shù)基礎(chǔ)(山東理工大學(xué))智慧樹(shù)知到期末考試答案章節(jié)答案2024年山東理工大學(xué)
- 幼兒園跳繩活動(dòng)方案及總結(jié)大班
- (高清版)WST 408-2024 定量檢驗(yàn)程序分析性能驗(yàn)證指南
- 人工智能原理與方法智慧樹(shù)知到期末考試答案章節(jié)答案2024年哈爾濱工程大學(xué)
- 流行病學(xué)-廈門(mén)大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- 全屋定制合同范本下載
- 2021-2022學(xué)年浙江省杭州市錢(qián)塘區(qū)人教版六年級(jí)上冊(cè)期末測(cè)試數(shù)學(xué)試卷【含答案】
- (正式版)JBT 11270-2024 立體倉(cāng)庫(kù)組合式鋼結(jié)構(gòu)貨架技術(shù)規(guī)范
- 2024年天津生態(tài)城投資開(kāi)發(fā)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 《美的冰箱介紹》課件
評(píng)論
0/150
提交評(píng)論