2023年塔里木職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年塔里木職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年塔里木職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年塔里木職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年塔里木職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年塔里木職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-22.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點的軌跡是()

A.一條直線

B.兩條直線

C.圓

D.橢圓答案:C3.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()

A.

B.

C.或

D.或答案:C4.在畫兩個變量的散點圖時,下面哪個敘述是正確的(

A.預(yù)報變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報變量y軸上

C.可以選擇兩個變量中任意一個變量x軸上

D.可以選擇兩個變量中任意一個變量y軸上答案:B5.下列輸入語句正確的是()

A.INPUT

x,y,z

B.INPUT“x=”;x,“y=”;y

C.INPUT

2,3,4

D.INPUT

x=2答案:A6.(x+2y)4展開式中各項的系數(shù)和為______.答案:令x=y=1,可得(1+2)4=81故為:81.7.已知f(x)是定義域為正整數(shù)集的函數(shù),對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當(dāng)k=1或2時,不一定有f(k)≥k2成立;對B,應(yīng)有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D8.已知點P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當(dāng)sin(θ+?)=1時,ω=3x+2y的最大值為

11故為11.9.根據(jù)給出的空間幾何體的三視圖,用斜二側(cè)畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設(shè)交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應(yīng)高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設(shè)⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.10.向量化簡后等于()

A.

B.

C.

D.答案:C11.某制藥廠為了縮短培養(yǎng)時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍定為29℃至50℃,現(xiàn)用分?jǐn)?shù)法確定最佳溫度,設(shè)第1,2,3次試驗的溫度分別為x1,x2,x3,若第2個試點比第1個試點好,則x3的值為(

)。答案:34℃或45℃12.從⊙O外一點P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點.求證:ACBC=ADBD.

答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.13.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實數(shù)λ等于()

A.

B.

C.

D.答案:D14.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102015.若正四面體ABCD的棱長為1,M是AB的中點,則MC

?MD

=______.答案:在正四面體中,因為M是AB的中點,所以CM=12(CA+CB),DM=12(DA+DB),所以CM?DM=12(CA+CB)?12(DA+DB)=14(CA?DA+CB?DA+CA?DB+CB?DB)=14(1×1×cos60°+0+0+1×1×cos60°)=14×1=14.所以MC

?MD

=CM?DM=14.故為:

1

4

.16.函數(shù)f(x)=x2+2的單調(diào)遞增區(qū)間為

______.答案:如圖所示:函數(shù)的遞增區(qū)間是:[0,+∞)故為:[0,+∞)17.各項都為正數(shù)的數(shù)列{an},滿足a1=1,an+12-an2=2.

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)證明1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2為首項為1,公差為2的等差數(shù)列,∴an2=1+(n-1)×2=2n-1,又an>0,則an=2n-1(Ⅱ)只需證:1+13+…+12n-1≤

2n-1.1當(dāng)n=1時,左邊=1,右邊=1,所以命題成立.當(dāng)n=2時,左邊<右邊,所以命題成立②假設(shè)n=k時命題成立,即1+13+…+12k-1≤2k-1,當(dāng)n=k+1時,左邊=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)

2=2(K+1)-1.命題成立由①②可知,1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.18.函數(shù)y=ax+b和y=bax(a≠0,b>0,且b≠1)的圖象只可能是()A.

B.

C.

D.

答案:對于A:函數(shù)y=ax+b遞增可得a>0,0<b<1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0故A正確對于B:函數(shù)y=ax+b遞增可得a>0,b>1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故B不正確對于C:函數(shù)y=ax+b遞減可得a<0,0<b<1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故C不正確對于D:函數(shù)y=ax+b遞減可得a<0,b>1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞增可得b>1且a>0,矛盾,故D不正確故選A19.我們稱正整數(shù)n為“好數(shù)”,如果n的二進(jìn)制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:

(1)二進(jìn)制表示中恰有5位數(shù)碼的好數(shù)共有______個;

(2)不超過2012的好數(shù)共有______個.答案:(1)二進(jìn)制表示中恰有5位數(shù)碼的二進(jìn)制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進(jìn)制數(shù)為:11111011100,它是一個十一位的二進(jìn)制數(shù).其中一位的二進(jìn)制數(shù)是:1,共有C11個;其中二位的二進(jìn)制數(shù)是:11,共有C22個;

其中三位的二進(jìn)制數(shù)是:101,110,111,共有C12+C22個;

其中四位的二進(jìn)制數(shù)是:1011,1101,1110,1111,共有C23+C33個;

其中五位的二進(jìn)制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;

以此類推,其中十位的二進(jìn)制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進(jìn)制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個20.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為()

A.內(nèi)切

B.相交

C.外切

D.相離答案:B21.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()

A.

B.2

C.

D.答案:C22.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標(biāo)是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A23.直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(

A.-3

B.2

C.-3或2

D.3或-2答案:A24.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.當(dāng)且僅當(dāng)x=2yx+2y=1時,即x=12,y=14時,取等號.故為:18.25.化簡:AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.26.已知(2x+1)3的展開式中,二項式系數(shù)和為a,各項系數(shù)和為b,則a+b=______.(用數(shù)字表示)答案:由題意可得(2x+1)3的展開式中,二項式系數(shù)和為a=23=8令x=1可得各項系數(shù)和為b=(2+1)3=27∴a+b=35故為:3527.向量a=i+

2j在向量b=3i+4j上的投影是______.答案:根據(jù)投影的定義可得:a在b方向上的投影為:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故為:115.28.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.29.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長線相交于點E,連接CE并延長交圓O于點F,連接AF.

(1)求證:B,C,E,D四點共圓;

(2)當(dāng)AB=12,tan∠EAF=23時,求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點共圓

(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圓O的半徑313.30.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.

(1)相似三角形的對應(yīng)角相等;

(2)當(dāng)a>1時,函數(shù)y=ax是增函數(shù).答案:(1)若兩個三角形相似,則它們的對應(yīng)角相等.條件p:三角形相似,結(jié)論q:對應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).31.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.32.對總數(shù)為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.33.如圖是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為______米.答案:如圖建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,將A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面寬為26m.故為:26.34.某重點高中高二歷史會考前,進(jìn)行了五次歷史會考模擬考試,某同學(xué)在這五次考試中成績?nèi)缦拢?0,90,93,94,93,則該同學(xué)的這五次成績的平均值和方差分別為()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B35.若函數(shù)f(x)=loga(x+b)的圖象如圖,其中a,b為常數(shù).則函數(shù)g(x)=ax+b的大致圖象是(

)

答案:D解析:試題分析:解:由函數(shù)f(x)=loga(x+b)的圖象為減函數(shù)可知0<a<1,f(x)=loga(x+b)的圖象由f(x)=logax向左平移可知0<b<1,故函數(shù)g(x)=ax+b的大致圖象是D故選D.36.已知a>0,且a≠1,解關(guān)于x的不等式:

答案:①當(dāng)a>1時,原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時,原不等式解為{x|loga2≤x<0解析:原不等式等價于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當(dāng)a>1時,原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時,原不等式解為{x|loga2≤x<037.設(shè)a1,a2,…,an為正數(shù),證明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:證明:∵a1,a2,…,an為正數(shù),∴要證明a1+a2+…+ann≥n1a1+1a2+…+1an,只要證明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴兩式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.38.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標(biāo)準(zhǔn)差為23,則實數(shù)a的值為______.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標(biāo)準(zhǔn)差為3a2=23解得a=±2故為:±239.由小正方體木塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小正方體木塊有()

A.6塊

B.7塊

C.8塊

D.9塊答案:B40.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點,若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB

+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+

12PC=12a-32b+12c.故為:12a-32b+12c.41.復(fù)數(shù),且A+B=0,則m的值是()

A.

B.

C.-

D.2答案:C42.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無軌跡答案:C43.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B44.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(

A.2

B.5

C.2或5

D.或答案:A45.如圖,在△ABC中,,,則實數(shù)λ的值為()

A.

B.

C.

D.

答案:D46.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點P的坐標(biāo)為(2,1),那么()

A.點P在直線L上,但不在圓M上

B.點P在圓M上,但不在直線L上

C.點P既在圓M上,又在直線L上

D.點P既不在直線L上,也不在圓M上答案:C47.設(shè)△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故為:348.下面為一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>20

B.i<20

C.i>=20

D.i<=20

答案:A49.已知A,B,C三點不共線,O為平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點不共線,點O是平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21550.下列命題:

①垂直于同一直線的兩直線平行;

②垂直于同一直線的兩平面平行;

③垂直于同一平面的兩直線平行;

④垂直于同一平面的兩平面平行;

其中正確的有()

A.③④

B.①②④

C.②③

D.②③④答案:C第2卷一.綜合題(共50題)1.如圖,圓周上按順時針方向標(biāo)有1,2,3,4,5五個點.一只青蛙按順時針方向繞圓從一個點跳到另一個點,若它停在奇數(shù)點上,則下次只能跳一個點;若停在偶數(shù)點上,則跳兩個點.該青蛙從“5”這點起跳,經(jīng)2

011次跳后它停在的點對應(yīng)的數(shù)字是______.答案:起始點為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點是1.故為12.袋中裝著標(biāo)有數(shù)字1,2,3,4的小球各3個,從袋中任取3個小球,每個小球被取出的可能性都相等.

(Ⅰ)求取出的3個小球上的數(shù)字互不相同的概率;

(Ⅱ)用X表示取出的3個小球上所標(biāo)的最大數(shù)字,求隨機(jī)變量X的分布列和均值.答案:(I)由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)C123,滿足條件的事件是取出的3個小球上的數(shù)字互不相同,共有C43C31C31C31記“一次取出的3個小球上的數(shù)字互不相同”的事件記為A,∴P(A)=C34?C13?C13?C13C312=2755.(II)由題意X所有可能的取值為:1,2,3,4.P(X=1)=1C312=1220;P(X=2)=C23?C13+C23?C13+C33C312=19220;P(X=3)=C26?C13+C16?C23+C33C312=64220=1655;P(X=4)=C29?C13+C19?C23+C33C312=136220=3455.∴隨機(jī)變量X的分布列為∴隨機(jī)變量X的期望為EX=1×1220+2×19220+3×1655+4×3455=15544.3.若不等式對一切x恒成立,求實數(shù)m的范圍.答案:見解析解析:∵x2-8x+20=(x-4)2+4>0,∴只須mx2-mx-1<0恒成立,即可:①

當(dāng)m=0時,-1<0,不等式成立;②

當(dāng)m≠0時,則須,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.4.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進(jìn)行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:

甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙參加更合適

(12分)5.已知x1、x2是關(guān)于x1的方程x2-(k-2)x+k2+3k+5=0的兩個實根,那么x12+x22的最大值是[

]

A.19

B.17

C.

D.18答案:D6.如圖,⊙O是Rt△ABC的外接圓,點O在AB上,BD⊥AB,點B是垂足,OD∥AC,連接CD.

求證:CD是⊙O的切線.答案:證明:連接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切線.(10分)7.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域為x>0,又函數(shù)f(x)=log2x定義域x>0,故選A.8.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B9.實數(shù)系的結(jié)構(gòu)圖如圖所示,其中1、2、3三個方格中的內(nèi)容分別為()

A.有理數(shù)、零、整數(shù)

B.有理數(shù)、整數(shù)、零

C.零、有理數(shù)、整數(shù)

D.整數(shù)、有理數(shù)、零

答案:B10.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,試證明a,b,c至少有一個不小于1.答案:證明:假設(shè)a,b,c均小于1,即a<1,b<1,c<1,則有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,兩者矛盾;故a,b,c至少有一個不小于1.11.在空間直角坐標(biāo)系中,點P(2,-4,6)關(guān)于y軸對稱點P′的坐標(biāo)為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標(biāo)系中,點(2,-4,6)關(guān)于y軸對稱,∴其對稱點為:(-2,-4,-6),故為:(-2,-4,-6).12.若A是圓x2+y2=16上的一個動點,過點A向y軸作垂線,垂足為B,則線段AB中點C的軌跡方程為()

A.x2+2y2=16

B.x2+4y2=16

C.2x2+y2=16

D.4x2+y2=16答案:D13.如圖所示的方格紙中有定點O,P,Q,E,F(xiàn),G,H,則=()

A.

B.

C.

D.

答案:C14.設(shè)a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.

(1)求b和c;

(2)求c在a方向上的射影;

(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d

)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a?c|a|

|c|=-5-22?29=-75858,∴c在a方向上的投影為|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.15.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.16.甲、乙兩位同學(xué)都參加了由學(xué)校舉辦的籃球比賽,它們都參加了全部的7場比賽,平均得分均為16分,標(biāo)準(zhǔn)差分別為5.09和3.72,則甲、乙兩同學(xué)在這次籃球比賽活動中,發(fā)揮得更穩(wěn)定的是()

A.甲

B.乙

C.甲、乙相同

D.不能確定答案:B17.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.答案:如圖,連接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因為∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,從而∠ABE=30°,于是AE=12AB=3.(10分)18.(本小題滿分10分)選修4-1:幾何證明選講

如圖,的角平分線的延長線交它的外接圓于點.

(Ⅰ)證明:;

(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因為△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點評】在圓的有關(guān)問題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時三角形相似是證明一些與比例有關(guān)問題的的最好的方法.19.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()

A.

B.

C.0

D.1答案:A20.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.21.已知點P1的球坐標(biāo)是P1(4,,),P2的柱坐標(biāo)是P2(2,,1),則|P1P2|=()

A.

B.

C.

D.4答案:A22.已知||=3,A、B分別在x軸和y軸上運動,O為原點,則動點P的軌跡方程是()

A.

B.

C.

D.答案:B23.如圖,四邊形OABC是邊長為1的正方形,OD=3,點P為△BCD內(nèi)(含邊界)的動點,設(shè)(α,β∈R),則α+β的最大值等于

()

A.

B.

C.

D.1

答案:B24.

選修1:幾何證明選講

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;

(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以O(shè)P∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.25.若a>b>0,則,,,從大到小是_____答案:>>>解析:,又ab>0,;即。故有:>>>26.閱讀程序框圖,運行相應(yīng)的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結(jié)構(gòu)經(jīng)第一次循環(huán)得到i=1,a=2;經(jīng)第二次循環(huán)得到i=2,a=5;經(jīng)第三次循環(huán)得到i=3,a=16;經(jīng)第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B27.函數(shù)y=ax的反函數(shù)的圖象過點(9,2),則a的值為______.答案:依題意,點(9,2)在函數(shù)y=ax的反函數(shù)的圖象上,則點(2,9)在函數(shù)y=ax的圖象上將x=2,y=9,代入y=ax中,得9=a2解得a=3故為:3.28.擬定從甲地到乙地通話m分鐘的電話費由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時間為5.5分鐘的話費為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.29.數(shù)據(jù):1,1,3,3的眾數(shù)和中位數(shù)分別是()

A.1或3,2

B.3,2

C.1或3,1或3

D.3,3答案:A30.已知正四棱柱的對角線的長為6,且對角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:231.已知A,B,C三點不共線,O為平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點不共線,點O是平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21532.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實數(shù)K的取值范圍為______.答案:因為函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).33.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為()

A.a(chǎn)<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a(chǎn)<b<1<d<c

答案:B34.經(jīng)過點M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時,設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x35.以下坐標(biāo)給出的點中,在曲線x=sin2θy=sinθ+cosθ上的點是()A.(12,-2)B.(2,3)C.(-34,12)D.(1,3)答案:把曲線x=sin2θy=sinθ+cosθ消去參數(shù)θ,化為普通方程為y2=1+x(-1≤x≤1),結(jié)合所給的選項,只有C中的點在曲線上,故選C.36.已知A(-1,2),B(2,-2),則直線AB的斜率是()

A.

B.

C.

D.答案:A37.下列幾種說法正確的個數(shù)是()

①相等的角在直觀圖中對應(yīng)的角仍然相等;

②相等的線段在直觀圖中對應(yīng)的線段仍然相等;

③平行的線段在直觀圖中對應(yīng)的線段仍然平行;

④線段的中點在直觀圖中仍然是線段的中點.

A.1

B.2

C.3

D.4答案:B38.拋物線y2=4px(p>0)的準(zhǔn)線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.

(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;

(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,當(dāng)0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設(shè)直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(yù)(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點坐標(biāo)為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點依次為N1,N2,N3,(0<p<1).∴點Nn的坐標(biāo)為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).39.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點為F,準(zhǔn)線為l,過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標(biāo)是3,則p=(

)。答案:240.隨機(jī)地向某個區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個撒種區(qū)域的面積大約有______m2.答案:設(shè)整個撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.41.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立42.在區(qū)間[0,1]產(chǎn)生的隨機(jī)數(shù)x1,轉(zhuǎn)化為[-1,3]上的均勻隨機(jī)數(shù)x,實施的變換為()

A.x=3x1-1

B.x=3x1+1

C.x=4x1-1

D.x=4x1+1答案:C43.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()

A.(x-1)2+y2=1

B.x2+(y-1)2=1

C.(x+1)2+y2=1

D.x2+y2=2答案:A44.一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個球,則其中含紅球個數(shù)的數(shù)學(xué)期望是

______.答案:設(shè)含紅球個數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時,表示從中取出2個球,其中不含紅球,當(dāng)ξ=1時,表示從中取出2個球,其中1個紅球,1個黃球,當(dāng)ξ=2時,表示從中取出2個球,其中2個紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.45.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7646.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.47.已知曲線C的方程是x2+y2+6ax-8ay=0,那么下列各點中不在曲線C上的是()

A.(0,0)

B.(2a,4a)

C.(3a,3a)

D.(-3a,-a)答案:B48.已知指數(shù)函數(shù)f(x)的圖象過點(3,8),求f(6)的值.答案:設(shè)指數(shù)函數(shù)為:f(x)=ax,因為指數(shù)函數(shù)f(x)的圖象過點(3,8),所以8=a3,∴a=2,所求指數(shù)函數(shù)為f(x)=2x;所以f(6)=26=64所以f(6)的值為64.49.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關(guān)系是()

A.互斥事件

B.對立事件

C.不是互斥事件

D.前者都不對答案:D50.已知圓x2+y2=r2在曲線|x|+|y|=4的內(nèi)部,則半徑r的范圍是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根據(jù)題意畫出圖形,如圖所示:可得曲線|x|+|y|=4表示邊長為42的正方形,如圖ABCD為正方形,x2+y2=r2表示以原點為圓心的圓,過O作OE⊥AB,∵邊AB所在直線的方程為x+y=4,∴|OE|=42=22,則滿足題意的r的范圍是0<r<22.故選A第3卷一.綜合題(共50題)1.函數(shù)y=ax2+a與(a≠0)在同一坐標(biāo)系中的圖象可能是()

A.

B.

C.

D.

答案:D2.小李在一旅游景區(qū)附近租下一個小店面賣紀(jì)念品和T恤,由于經(jīng)營條件限制,他最多進(jìn)50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營,已知進(jìn)貨價為T恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進(jìn)貨,假設(shè)每件T恤的利潤是18元,每件紀(jì)念品的利潤是20元,問怎樣進(jìn)貨才能使他的利潤最大,最大利潤為多少?答案:設(shè)進(jìn)T恤x件,紀(jì)念品y件,可得利潤為z元,由題意得x、y滿足的約束條件為:

0≤x≤50

0≤y≤30

x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個頂點坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過C(50,252)時取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時,z取最大值即進(jìn)50件T恤,12件紀(jì)念品時,可獲最大利潤,最大利潤為1140元.3.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D4.設(shè)等比數(shù)列{an}的首項為a1,公比為q,則“a1<0且0<q<1”是“對于任意n∈N*都有an+1>an”的

()

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件答案:A5.已知圓錐的母線長為5,底面周長為6π,則圓錐的體積是______.答案:圓錐的底面周長為6π,所以圓錐的底面半徑為3;圓錐的高為4所以圓錐的體積為13×π32×4=12π故為12π.6.閱讀下面的程序框圖,該程序運行后輸出的結(jié)果為______.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.7.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.8.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D9.使方程

mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是()A.m=n=r=2B.m2+n2≠0,且r≠1C.mn>0,且r≠1D.mn<0,且r≠1答案:mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是m2+n2≠0,且m2m=n2n≠rr+1,即m2+n2≠0,且r≠1,故選B.10.設(shè)復(fù)數(shù)z的實部是

12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.11.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為1312.如果命題P:?∈{?},命題Q:??{?},那么下列結(jié)論不正確的是()A.“P或Q”為真B.“P且Q”為假C.“非P”為假D.“非Q”為假答案:命題P:?∈{?},命題Q:??{?},可直接看出命題Q,命題P都是正確的.故“P或Q”為真.“P且Q”為真.“非P”為假.“非Q”為假.故選B.13.直線l過橢圓x24+y23=1的右焦點F2并與橢圓交與A、B兩點,則△ABF1的周長是()A.4B.6C.8D.16答案:根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因為|AF2|+|BF2|=|AB|,所以△ABF1的周長為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.14.命題“存在實數(shù)x,,使x>1”的否定是()

A.對任意實數(shù)x,都有x>1

B.不存在實數(shù)x,使x≤1

C.對任意實數(shù)x,都有x≤1

D.存在實數(shù)x,使x≤1答案:C15.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191016.在極坐標(biāo)系中,直線l經(jīng)過圓ρ=cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標(biāo)為______.答案:由ρ=cosθ可知此圓的圓心為(12,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標(biāo)方程為ρcosθ=12,所以直線l與極軸的交點的極坐標(biāo)為(12,0).故為:(12,0).17.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D18.

以下四組向量中,互相平行的有()組.

A.一

B.二

C.三

D.四答案:D19.若某簡單組合體的三視圖(單位:cm)如圖所示,說出它的幾何結(jié)構(gòu)特征,并求該幾何體的表面積。答案:解:該幾何體由球和圓臺組成。球的半徑為1,圓臺的上下底面半徑分別為1、4,高為4,母線長為5,S球=4πcm2,S臺=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S臺=46πcm2。20.在市場上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個相互獨立事件同時發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.66521.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.22.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時兩條直線平行,當(dāng)k≠3時有2=-24-k≠3

所以

k=5故為:3或5.23.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a

2+4a?b+4

b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:224.設(shè)二項式(33x+1x)n的展開式的各項系數(shù)的和為P,所有二項式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對于二項式(33x+1x)n的展開式的所有二項式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.25.若直線的參數(shù)方程為,則直線的斜率為(

)A.B.C.D.答案:D26.有一批數(shù)量很大的產(chǎn)品,其中次品率是20%,對這批產(chǎn)品進(jìn)行抽查,每次抽出一件,如果抽出次品則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數(shù)最多不超過9次,那么抽查次數(shù)為9次的概率為(

A.0.89

B.0.88×0.2

C.0.88

D.0.28×0.8答案:C27.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.28.隨機(jī)變量ξ服從二項分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()

A.

B.0

C.1

D.答案:D29.利用獨立性檢驗對兩個分類變量是否有關(guān)系進(jìn)行研究時,若有99.5%的把握說事件A和B有關(guān)系,則具體計算出的數(shù)據(jù)應(yīng)該是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C30.定義集合運算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設(shè)集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當(dāng)x=0時,z=0,當(dāng)x=1,y=2時,z=6,當(dāng)x=1,y=3時,z=12,故所有元素之和為18,故選D31.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點,若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.32.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為

______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.33.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗時,依次將電阻從小到大安排序號,如果第1個試點與第2個試點比較,第1個試點是一個好點,則第3個試點值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C34.在空間直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)A(,,),B(,,0),C(

,,),則(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C35.若定義運算a⊕b=b,a<ba,a≥b則函數(shù)f(x)=2x⊕(12)x的值域為______(用區(qū)間表示).答案:由題意畫出f(x)=2x?(12)x的圖象(實線部分),由圖可知f(x)的值域為[1,+∞).故為:[1,+∞).36.已知f(x)是定義域為正整數(shù)集的函數(shù),對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當(dāng)k=1或2時,不一定有f(k)≥k2成立;對B,應(yīng)有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D37.直線的參數(shù)方程為,l上的點P1對應(yīng)的參數(shù)是t1,則點P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論