版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年河南水利與環(huán)境職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.
若向量,滿足||=||=2,與的夾角為60°,則|+|=()
A.
B.2
C.4
D.12答案:B2.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ3.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點E,則此圖形中一定相似的三角形有()對.
A.0
B.3
C.2
D.1
答案:C4.P為△ABC內(nèi)一點,且PA+3PB+7PC=0,則△PAC與△ABC面積的比為______.答案:(如圖)分別延長
PB、PC
至
B1、C1,使
PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點P是三角形
AB1C1
的重心,設(shè)三角形
AB1C1
的面積為
3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:3115.設(shè)空間兩個不同的單位向量
a=(x1,y1,0),
b=(x2,y2,0)與向量
c=(1,1,1)的夾角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大?。鸢福海?)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°6.一圓錐側(cè)面展開圖為半圓,平面α與圓錐的軸成45°角,則平面α與該圓錐側(cè)面相交的交線為()A.圓B.拋物線C.雙曲線D.橢圓答案:設(shè)圓錐的母線長為R,底面半徑為r,則:πR=2πr,∴R=2r,∴母線與高的夾角的正弦值=rR=12,∴母線與高的夾角是30°.由于平面α與圓錐的軸成45°>30°;則平面α與該圓錐側(cè)面相交的交線為橢圓.故選D.7.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A8.如圖,一個正方體內(nèi)接于一個球,過球心作一個截面,則截面的可能圖形為(
)
A.①③
B.②④
C.①②③
D.②③④答案:C9.若一輛汽車每天行駛的路程比原來多19km,則該汽車在8天內(nèi)行駛的路程s(km)就超過2200km;若它每天行駛的路程比原來少12km,則它行駛同樣的路程s(km)就得花9天多的時間。這輛汽車原來每天行駛的路程(km)的范圍是(
)
A.(259,260)
B.(258,260)
C.(257,260)
D.(256,260)答案:D10.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點在y軸上的橢圓的是()
A.
B.(a>b>0)
C.
D.
答案:C11.在空間直角坐標系0xyz中有兩點A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.12.某人射擊一次擊中的概率為0.6,經(jīng)過3次射擊,此人至少有兩次擊中目標的概率為()
A.
B.
C.
D.答案:A13.設(shè)z是復(fù)數(shù),a(z)表示zn=1的最小正整數(shù)n,則對虛數(shù)單位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,則最小正整數(shù)n為4.故選C.14.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c15.在一個倒置的正三棱錐容器內(nèi)放入一個鋼球,鋼球恰與棱錐的四個面都接觸,過棱錐的一條側(cè)棱和高作截面,正確的截面圖形是()A.
B.
C.
D.
答案:由題意作出圖形如圖:SO⊥平面ABC,SA與SO的平面與平面SBC垂直,球與平面SBC的切點在SD上,球與側(cè)棱SA沒有公共點所以正確的截面圖形為B選項故選B.16.在莖葉圖中,樣本的中位數(shù)為______,眾數(shù)為______.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1217.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C18.某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小球的抽獎箱中,每次取出一球記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6則中一等獎,等于5中二等獎,等于4或3中三等獎.
(1)求中三等獎的概率;
(2)求中獎的概率.答案:(1)設(shè)“中三等獎”為事件A,“中獎”為事件B,從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個小球號碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個小球號相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎的概率為716;(2)兩個小球號碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)兩個小球號碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎的概率為:58.19.點M的直角坐標為(-3,-1),則點M的極坐標為______.答案:∵M的直角坐標為(-3,-1),設(shè)M的極坐標為(ρ,θ),則ρ=(-3)2+(-1)2=2,又tanθ=33,∴θ=7π6,∴M的極坐標為(2,7π6).20.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.21.已知P(x,y)是橢圓x24+y2=1上的點,求M=x+2y的取值范圍.答案:∵x24+y2=1的參數(shù)方程是x=2cosθy=sinθ(θ是參數(shù))∴設(shè)P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7分)∴M=x+2y的取值范圍是[-22,22].(10分)22.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()
A.若2x+1是整數(shù),則x∈Z
B.若2x+1是奇數(shù),則x∈Z
C.若2x+1是偶數(shù),則x∈Z
D.若2x+1能被3整除,則x∈Z
E.若2x+1是整數(shù),則x∈Z答案:A23.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.24.下面哪個不是算法的特征()A.抽象性B.精確性C.有窮性D.唯一性答案:根據(jù)算法的概念,可知算法具有抽象性、精確性、有窮性等,同一問題,可以有不同的算法,故選D.25.已知原命題“兩個無理數(shù)的積仍是無理數(shù)”,則:
(1)逆命題是“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”;
(2)否命題是“兩個不都是無理數(shù)的積也不是無理數(shù)”;
(3)逆否命題是“乘積不是無理數(shù)的兩個數(shù)都不是無理數(shù)”;
其中所有正確敘述的序號是______.答案:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”,正確.(2)同時否定原命題的條件和結(jié)論得到否命題:“兩個不都是無理數(shù)的積也不是無理數(shù)”,正確.(3)同時否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無理數(shù)的兩個數(shù)不都是無理數(shù)”.所以逆否命題錯誤.故為:(1)(2).26.一段雙行道隧道的橫截面邊界由橢圓的上半部分和矩形的三邊組成,如圖所示.一輛卡車運載一個長方形的集裝箱,此箱平放在車上與車同寬,車與箱的高度共計4.2米,箱寬3米,若要求通過隧道時,車體不得超過中線.試問這輛卡車是否能通過此隧道,請說明理由.答案:建立如圖所示的坐標系,則此隧道橫截面的橢圓上半部分方程為:x225+y24=1,y≥0.令x=3,則代入橢圓方程,解得y=1.6,因為1.6+3=4.6>4.2,所以,卡車能夠通過此隧道.27.如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若則下列向量中與相等的向量是()
A.
B.
C.
D.
答案:A28.下列命題:
①垂直于同一直線的兩直線平行;
②垂直于同一直線的兩平面平行;
③垂直于同一平面的兩直線平行;
④垂直于同一平面的兩平面平行;
其中正確的有()
A.③④
B.①②④
C.②③
D.②③④答案:C29.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點,P1(x′,y′)是P(x,y)在矩陣M=0110對應(yīng)變換作用下新曲線上的對應(yīng)點,則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x30.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D31.求證:三個兩兩垂直的平面的交線兩兩垂直.答案:設(shè)三個互相垂直的平面分別為α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三個平面的公共點為O,如圖所示:在平面γ內(nèi),除點O外,任意取一點M,且點M不在這三個平面中的任何一個平面內(nèi),過點M作MN⊥c,MP⊥b,M、P為垂足,則有平面和平面垂直的性質(zhì)可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.
再由b、c在平面γ內(nèi),可得a⊥b,a⊥c.同理可證,c⊥b,c⊥a,從而證得a、b、c互相垂直.32.設(shè)F1,F(xiàn)2是雙曲線的兩個焦點,點P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A33.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為
______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個等式兩邊分別平方,再相加,即可消去含θ的項,所以有(x-1)2+y2=4.34.下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是()
A.①②B.①③C.①④D.②④答案:正方體的三視圖都相同,而三棱臺的三視圖各不相同,圓錐和正四棱錐的,正視圖和側(cè)視圖相同,所以,正確為D.故選D35.點(1,2)到直線x+2y+5=0的距離為______.答案:點(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2536.已知0<a<1,loga(1-x)<logax則()
A.0<x<1
B.x<
C.0<x<
D.<x<1答案:C37.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B38.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時,|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.39.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時將量詞對任意的x∈R變?yōu)榇嬖趯崝?shù)x,再將不等號≥變?yōu)椋技纯桑蕿椋捍嬖趯崝?shù)x,使得x<2.40.已知a=(1,2),則|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故為5.41.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為______.答案:設(shè)平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當(dāng)α=0°時,|a+b+c|2=100,|a+b+c|=10,當(dāng)α=120°時,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.42.將參數(shù)方程化為普通方程為(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C43.若x~N(2,σ2),P(0<x<4)=0.8,則P(0<X<2)=______.答案:∵X~N(2,σ2),∴正態(tài)曲線關(guān)于x=2對稱,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故為:0.4.44.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.45.{,,}=是空間向量的一個基底,設(shè)=+,=+,=+,給出下列向量組:①{,,},②{,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.
A.1
B.2
C.3
D.4答案:C46.用0,1,2,3組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)有()
A.8個
B.10個
C.18個
D.24個答案:A47.下列關(guān)于算法的說法中正確的個數(shù)是()
①求解某一類問題的算法是唯一的;
②算法必須在有限步操作之后停止;
③算法的每一步操作必須是明確的,不能有歧義或模糊;
④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個數(shù)是3.故選C.48.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(
)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當(dāng)且僅當(dāng),又,故時不等式取,選C。49.參數(shù)方程x=3cosθy=4sinθ,(θ為參數(shù))化為普通方程是______.答案:由參數(shù)方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化簡得x29+y216=1,即為橢圓的普通方程故為:x29+y216=150.某校在檢查學(xué)生作業(yè)時,抽出每班學(xué)號尾數(shù)為4的學(xué)生作業(yè)進行檢查,這里主要運用的抽樣方法是()
A.分層抽樣
B.抽簽抽樣
C.隨機抽樣
D.系統(tǒng)抽樣答案:D第2卷一.綜合題(共50題)1.給出命題:
①線性回歸分析就是由樣本點去尋找一條貼近這些點的直線;
②利用樣本點的散點圖可以直觀判斷兩個變量的關(guān)系是否可以用線性關(guān)系表示;
③通過回歸方程=bx+a及其回歸系數(shù)b可以估計和預(yù)測變量的取值和變化趨勢;
④線性相關(guān)關(guān)系就是兩個變量間的函數(shù)關(guān)系.其中正確的命題是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D2.制作一個面積為1
m2,形狀為直角三角形的鐵架框,有下列四種長度的鐵管供選擇,較經(jīng)濟的(既夠用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:設(shè)一條直角邊為x,則另一條直角邊是2x,斜邊長為x2+4x2故周長
l=x+2x+x2+4x2≥22+2≈4.82當(dāng)且僅當(dāng)x=2時等號成立,故較經(jīng)濟的(既夠用又耗材量少)是5m故應(yīng)選B.3.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-24.方程(x2-9)2(x2-y2)2=0表示的圖形是()
A.4個點
B.2個點
C.1個點
D.四條直線答案:D5.(參數(shù)方程與極坐標)已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:226.已知點B是點A(2,-3,5)關(guān)于平面xOy的對稱點,則|AB|=()
A.10
B.
C.
D.38答案:A7.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D8.編號為A、B、C、D、E的五個小球放在如圖所示的五個盒子中,要求每個盒子只能放一個小球,且A不能放1,2號,B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號,則A可以放在3、4、5號盒子,分2種情況討論:①當(dāng)A在4、5號盒子時,B有1種放法,剩下3個有A33=6種不同放法,此時,共有2×1×6=12種情況;②當(dāng)A在3號盒子時,B有3種放法,剩下3個有A33=6種不同放法,此時,共有1×3×6=18種情況;由加法原理,計算可得共有12+18=30種不同情況;故選C.9.用隨機數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機數(shù)表法從100名學(xué)生選一個,共有100種結(jié)果,滿足條件的事件是抽取20個,∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.10.已知
|x|<a,|y|<a.求證:|xy|<a.答案:證明:∵0<|x|<a,0<|y|<a∴由不等式的性質(zhì),可得|xy|<a11.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是:相交或相切.故為:相交或相切.12.盒子中有10張獎券,其中3張有獎,甲、乙先后從中各抽取1張(不放回),記“甲中獎”為A,“乙中獎”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨立,說明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.13.某房間有四個門,甲要各進、出這個房間一次,不同的走法有多少種?()
A.12
B.7
C.16
D.64答案:C14.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.15.不等式的解集
.答案:;解析:略16.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C17.已知點P為y軸上的動點,點M為x軸上的動點,點F(1,0)為定點,且滿足PN+12NM=0,PM?PF=0.
(Ⅰ)求動點N的軌跡E的方程;
(Ⅱ)過點F且斜率為k的直線l與曲線E交于兩點A,B,試判斷在x軸上是否存在點C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.答案:(Ⅰ)設(shè)N(x,y),則由PN+12NM=0,得P為MN的中點.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM?PF=-x+y24=0,即y2=4x.∴動點N的軌跡E的方程y2=4x.(Ⅱ)設(shè)直線l的方程為y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.設(shè)A(x1,y1),B(x2,y2),則
y1+y2=4k,y1y2=-4.假設(shè)存在點C(m,0)滿足條件,則CA=(x1-m,y1),CB=(x2-m,y2),∴CA?CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴關(guān)于m的方程m2-m(4k2+2)-3=0有解.∴假設(shè)成立,即在x軸上存在點C,使得|CA|2+|CB|2=|AB|2成立.18.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設(shè)直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.19.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為______.答案:由題意,方程x2m+y2n=1表示雙曲線時,mn<0,m>0,n<0時,有2×2=4種,m<0,n>0時,有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:1220.已知隨機變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D21.已知圓柱的軸截面周長為6,體積為V,則下列關(guān)系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設(shè)圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當(dāng)且僅當(dāng)r=h時取等號,由此可得V≤π恒成立故選:B22.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗,則這種抽樣方法是()A.簡單隨機抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機確定起點,每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.23.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()
A.
B.
C.0
D.1答案:A24.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.25.已知M和N分別是四面體OABC的邊OA,BC的中點,且,若=a,=b,=c,則用a,b,c表示為()
A.
B.
C.
D.
答案:B26.兩條直線x-y+6=0與x+y+6=0的夾角為()
A.
B.
C.0
D.答案:D27.下列集合中,不同于另外三個集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個元素,即方程“x=0”.故選D.28.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數(shù)解,求a的值.答案:設(shè)方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-329.在平面直角坐標系內(nèi)第二象限的點組成的集合為______.答案:∵平面直角坐標系內(nèi)第二象限的點,橫坐標小于0,縱坐標大于0,∴在平面直角坐標系內(nèi)第二象限的點組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.30.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()
A.
B.
C.
D.答案:D31.過拋物線y2=2px(p>0)的焦點F的直線與拋物線相交于M,N兩點,自M,N向準線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C32.一個正三棱錐的底面邊長等于一個球的半徑,該正三棱錐的高等于這個球的直徑,則球的體積與正三棱錐體積的比值為()
A.
B.
C.
D.答案:A33.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()
A.
B.-
C.2
D.-2答案:B34.直線2x-y=7與直線3x+2y-7=0的交點是()
A.(3,-1)
B.(-1,3)
C.(-3,-1)
D.(3,1)答案:A35.某程序框圖如圖所示,若a=3,則該程序運行后,輸出的x值為______.答案:由題意,x的初值為1,每次進行循環(huán)體則執(zhí)行乘二加一的運算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.36.不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A37.由1,2,3這三個數(shù)字抽出一部分或全部數(shù)字(沒有重復(fù))所組成的自然數(shù)有______.答案:由題意,一位數(shù)有:1,2,3;兩位數(shù)有:12,21,23,32,13,31;三位數(shù)有:123,132,213,231,321,312故為:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.38.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.39.5位同學(xué)報名參加兩個課外活動小組,每位同學(xué)限報其中的一個小組,則不同的報名方法共有()
A.10種
B.20種
C.25種
D.32種答案:D40.已知拋物線C:y2=4x的焦點為F,點A在拋物線C上運動.
(1)當(dāng)點A,P滿足AP=-2FA,求動點P的軌跡方程;
(2)設(shè)M(m,0),其中m為常數(shù),m∈R+,點A到M的距離記為d,求d的最小值.答案:(1)設(shè)動點P的坐標為(x,y),點A的坐標為(xA,yA),則AP=(x-xA,y-yA),因為F的坐標為(1,0),所以FA=(xA-1,yA),因為AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動點P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時,dmin=m;m-2>0,即m>2,xA=m-2時,dmin=-4-4m.41.若關(guān)于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.
(1)方程兩根都大于1;
(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。42.若向量,則這兩個向量的位置關(guān)系是___________。答案:垂直43.已知函數(shù)f(x)對其定義域內(nèi)任意兩個實數(shù)a,b,當(dāng)a<b時,都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個交點.答案:證明:假設(shè)函數(shù)f(x)的圖象與x軸至少有兩個交點,…(2分)(1)若f(x)的圖象與x軸有兩個交點,不妨設(shè)兩個交點的橫坐標分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實數(shù)x1,x2,當(dāng)x1<x2時,有f(x1)<f(x2).…(7分)又根據(jù)假設(shè),x1,x2是函數(shù)f(x)的兩個零點,所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個交點.…(11分)(2)若f(x)的圖象與x軸交點多于兩個,可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個以上交點.綜上,函數(shù)f(x)的圖象與x軸至多有一個交點…(14分)44.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點D,與圓交于點E,連接AE,已知ED=3,BD=6,則線段AE的長=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:3345.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:446.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點,則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.47.曲線xy=1的參數(shù)方程不可能是()
A.
B.
C.
D.答案:B48.△ABC中,若有一個內(nèi)角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因為A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.49.若一點P的極坐標是(r,θ),則它的直角坐標如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點P的極坐標是(r,θ)的直角坐標為:(rcosθ,rsinθ).50.將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.第3卷一.綜合題(共50題)1.為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時,則解密得到的明文為()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,∴當(dāng)接收方收到密文14,9,23,28時,則a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文為6,4,1,7故選C.2.方程組的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A3.在空間有三個向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.4.附加題選做題B.(矩陣與變換)
設(shè)矩陣A=m00n,若矩陣A的屬于特征值1的一個特征向量為10,屬于特征值2的一個特征向量為01,求實數(shù)m,n的值.答案:由題意得m00n10=110,m00n01=201,…6分化簡得m=10?n=00?m=0n=2所以m=1n=2.…10分5.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個小組分別獨立開展該種子的發(fā)芽試驗,每次試驗種一粒種子,假定某次試驗種子發(fā)芽,則稱該次試驗是成功的,如果種子沒有發(fā)芽,則稱該次試驗是失敗的.
(1)第一個小組做了三次試驗,求至少兩次試驗成功的概率;
(2)第二個小組進行試驗,到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個小組做了三次試驗,至少兩次試驗成功的概率是P(A)=·+=.(2)第二個小組在第4次成功前,共進行了6次試驗,其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.6.某車間工人已加工一種軸100件,為了了解這種軸的直徑,要從中抽出10件在同一條件下測量(軸的直徑要求為(20±0.5)mm),如何采用簡單隨機抽樣方法抽取上述樣本?答案:本題是一個簡單抽樣,∵100件軸的直徑的全體是總體,將其中的100個個體編號00,01,02,…,99,利用隨機數(shù)表來抽取樣本的10個號碼,可以從表中的第20行第3列的數(shù)開始,往右讀數(shù),得到10個號碼如下:16,93,32,43,50,27,89,87,19,20將上述號碼的軸在同一條件下測量直徑.7.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組
x-
y=1x+y=3解之得x=2y=1故為x=2y=18.為了調(diào)查上海市中學(xué)生的身體狀況,在甲、乙兩所學(xué)校中各隨意抽取了
100名學(xué)生,測試引體向上,結(jié)果如下表所示:
(1)甲乙兩校被測學(xué)生引體向上的平均數(shù)分別是:甲校______個,乙校______個.
(2)若5個以下(不含5個)為不合格,則甲乙兩校的合格率分別為甲校______
乙校______
(3)若15個以上(含15個)為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)
(4)用你所學(xué)的統(tǒng)計知識對兩所學(xué)校學(xué)生的身體狀況作一個比較.你的結(jié)論是______.答案:(1)甲校被測學(xué)生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測學(xué)生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些9.在下列四個命題中,正確的共有()
①坐標平面內(nèi)的任何一條直線均有傾斜角和斜率;
②直線的傾斜角的取值范圍是[0,π];
③若一條直線的斜率為tanα,則此直線的傾斜角為α;
④若一條直線的傾斜角為α,則此直線的斜率為tanα.
A.0個
B.1個
C.2個
D.3個答案:A10.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點到公路l和到A地距離相等,現(xiàn)要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉(zhuǎn)運貨物,經(jīng)測算從M到A,B修建公路的費用均為a萬元/km,那么修建這兩條公路的總費用最低是(單位萬元)()
A.(2+)a
B.5a
C.2(+1)a
D.6a
答案:B11.如圖,在平行四邊形OABC中,點C(1,3).
(1)求OC所在直線的斜率;
(2)過點C做CD⊥AB于點D,求CD所在直線的方程.答案:(1)∵點O(0,0),點C(1,3),∴OC所在直線的斜率為kOC=3-01-0=3.(2)在平行四邊形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直線的斜率為kCD=-13.∴CD所在直線方程為y-3=-13(x-1),即x+3y-10=0.12.每一噸鑄鐵成本y
(元)與鑄件廢品率x%建立的回歸方程y=56+8x,下列說法正確的是()A.廢品率每增加1%,成本每噸增加64元B.廢品率每增加1%,成本每噸增加8%C.廢品率每增加1%,成本每噸增加8元D.如果廢品率增加1%,則每噸成本為56元答案:∵回歸方程y=56+8x,∴當(dāng)x增加一個單位時,對應(yīng)的y要增加8個單位,這里是平均增加8個單位,故選C.13.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點重合,則a的坐標是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點重合.故選C.14.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A15.選修4-2:矩陣與變換
已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.16.下列圖象中不能作為函數(shù)圖象的是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應(yīng),這時稱y是x的函數(shù).結(jié)合選項可知,只有選項B中是一個x對應(yīng)1或2個y故選B.17.若正四面體ABCD的棱長為1,M是AB的中點,則MC
?MD
=______.答案:在正四面體中,因為M是AB的中點,所以CM=12(CA+CB),DM=12(DA+DB),所以CM?DM=12(CA+CB)?12(DA+DB)=14(CA?DA+CB?DA+CA?DB+CB?DB)=14(1×1×cos60°+0+0+1×1×cos60°)=14×1=14.所以MC
?MD
=CM?DM=14.故為:
1
4
.18.在下列4個命題中,是真命題的序號為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個內(nèi)角相等.
A.①
B.①②
C.①②③
D.①②④答案:D19.將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=()
816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.20.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生數(shù)是高一學(xué)生數(shù)的兩倍,高二學(xué)生數(shù)比高一學(xué)生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應(yīng)抽取高一學(xué)生數(shù)為()
A.8
B.11
C.16
D.10答案:A21.設(shè)p,q是簡單命題,則“p且q為真”是“p或q為真”的()A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件答案:若“p且q為真”成立,則p,q全真,所以“p或q為真”成立若“p或q為真”則p,q全真或真q假或p假q真,所以“p且q為真”不一定成立∴“p且q為真”是“p或q為真”的充分不必要條件故選B22.已知A(3,-2),B(-5,4),則以AB為直徑的圓的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB為直徑的圓的圓心為(-1,1),半徑r=(-1-3)2+(1+2)2=5,∴圓的方程為(x+1)2+(y-1)2=25故選B.23.甲、乙、丙、丁四位同學(xué)各自對A、B兩個變量的線性相關(guān)性作試驗,并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:
則哪位同學(xué)的實驗結(jié)果體現(xiàn)A、B兩個變量更強的線性相關(guān)性()
A.丙
B.乙
C.甲
D.丁答案:C24.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設(shè)第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應(yīng)變第個月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準,構(gòu)造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND25.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.26.下列說法不正確的是()A.圓柱側(cè)面展開圖是一個矩形B.圓錐的過軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺平行于底面的截面是圓面答案:圓柱的側(cè)面展開圖是一個矩形,A正確,因為母線長相等,得到圓錐的軸截面是一個等腰三角形,B正確,圓臺平行于底面的截面是圓面,D正確,故選C.27.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C28.在吸煙與患肺病這兩個分類變量的計算中,“若x2的觀測值為6.635,我們有99%的把握認為吸煙與患肺病有關(guān)系”這句話的意思是指()
A.在100個吸煙的人中,必有99個人患肺病
B.有1%的可能性認為推理出現(xiàn)錯誤
C.若某人吸煙,則他有99%的可能性患有肺病
D.若某人患肺病,則99%是因為吸煙答案:B29.某學(xué)校準備調(diào)查高三年級學(xué)生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會的同學(xué)隨機對24名同學(xué)進行調(diào)查;第二種由教務(wù)處對年級的240名學(xué)生編號,由001到240,請學(xué)號最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:學(xué)生會的同學(xué)隨機對24名同學(xué)進行調(diào)查,是簡單隨機抽樣,對年級的240名學(xué)生編號,由001到240,請學(xué)號最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D30.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實數(shù)x+y的值______.答案:因為集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.31.在直徑為4的圓內(nèi)接矩形中,最大的面積是()
A.4
B.2
C.6
D.8答案:D32.如圖P為空間中任意一點,動點Q在△ABC所在平面內(nèi)運動,且,則實數(shù)m=()
A.0
B.2
C.-2
D.1
答案:C33.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學(xué)??萍夹〗M在計算機上模擬航天器變軌返回試驗,設(shè)計方案
如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為
對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當(dāng)航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標為(6,4),|AC|=25,|BC|=4.故為:25、4.34.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 緊固件合同范例
- 運輸沙土合同范例
- 山東藝術(shù)學(xué)院《測量學(xué)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東醫(yī)學(xué)高等??茖W(xué)?!峨姶艌雠c微波》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東杏林科技職業(yè)學(xué)院《分子生物學(xué)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 市場開發(fā)服務(wù)合同范例
- 采購監(jiān)控設(shè)備合同范例
- 建委備案合同范例
- 寄賣行買賣合同范例
- 佛像定制加工合同范例
- 負荷率電價的理論依據(jù)、計算方法與政策選擇
- 五年級上學(xué)期期末家長會課件
- 科技創(chuàng)新保密知識培訓(xùn)
- 常用食物含銅量表-獻給有需要的人
- 濟南律師行業(yè)分析
- 山東大學(xué)答辯專屬PPT模板
- 《國際供應(yīng)鏈管理》課件
- 煙臺汽車西站工程施工組織設(shè)計
- 婦科常用藥物課件
- 高中數(shù)學(xué)說課一等獎?wù)n件
- 2024年人口老齡化國情區(qū)情教育知識競賽試題及答案
評論
0/150
提交評論