版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年新疆應用職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知x,y的取值如下表:
x0134y2.24.34.86.7從散點圖分析,y與x線性相關,則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標為(2,92).故為:(2,92).2.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.3.已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則A1B1=A2B2是l1∥l2的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分又非必要條件答案:當A1B1=A2B2
時,兩直線可能平行,也可能重合,故充分性不成立.當l1∥l2時,B1與B2可能都等于0,故A1B1=A2B2
不一定成立,故必要性不成立.綜上,A1B1=A2B2是l1∥l2的既非充分又非必要條件,故選D.4.設m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D5.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結論)”,上面推理的錯誤是()
A.大前提錯導致結論錯
B.小前提錯導致結論錯
C.推理形式錯導致結論錯
D.大前提和小前提錯都導致結論錯答案:A6.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當x≤5時,y=10x=10,得x=1;當x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.7.直線l過拋物線y2=2px(p>0)的焦點,且與拋物線交于A、B兩點,若線段AB的長是8,AB的中點到y(tǒng)軸的距離是2,則此拋物線方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:設A(x1,y1),B(x2,y2),根據(jù)拋物線定義,x1+x2+p=8,∵AB的中點到y(tǒng)軸的距離是2,∴x1+x22=2,∴p=4;∴拋物線方程為y2=8x故選B8.(選做題)圓內(nèi)非直徑的兩條弦AB、CD相交于圓內(nèi)一點P,已知PA=PB=4,PC=14PD,則CD=______.答案:連接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故為:109.設p,q是簡單命題,則“p且q為真”是“p或q為真”的()A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件答案:若“p且q為真”成立,則p,q全真,所以“p或q為真”成立若“p或q為真”則p,q全真或真q假或p假q真,所以“p且q為真”不一定成立∴“p且q為真”是“p或q為真”的充分不必要條件故選B10.已知α1,α2,…αn∈(0,π),n是大于1的正整數(shù),求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數(shù)學歸納法證明(1)n=2時,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時成立.(2)假設n=k(k≥2)時成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當n=k+1時,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時也成立.由(1)(2)得,原式成立.11.點(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D12.如果e1,e2是平面a內(nèi)所有向量的一組基底,那么()A.若實數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.空間任一向量可以表示為a=λ1e1+λ2e2,這里λ1,λ2∈RC.對實數(shù)λ1,λ2,λ1e1+λ2e2不一定在平面a內(nèi)D.對平面a中的任一向量a,使a=λ1e1+λ2e2的實數(shù)λ1,λ2有無數(shù)對答案:∵由基底的定義可知,e1和e2是平面上不共線的兩個向量,∴實數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0,不是空間任一向量都可以表示為a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示為a=λ1e1+λ2e2的形式,此時實數(shù)λ1,λ2有且只有一對,而對實數(shù)λ1,λ2,λ1e1+λ2e2一定在平面a內(nèi),故選A.13.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()
A.
B.-
C.2
D.-2答案:B14.從橢圓
x2a2+y2b2=1(a>b>0)上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB∥OP,|F1A|=10+5,求橢圓的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x軸∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴橢圓方程為x210+y25=1.15.為了調查高中生的性別與是否喜歡足球之間有無關系,一般需要收集以下數(shù)據(jù)______.答案:為了調查高中生的性別與是否喜歡足球之間有無關系,一般需要收集男女生中喜歡或不喜歡足球的人數(shù),再得出2×2列聯(lián)表,最后代入隨機變量的觀測值公式,得出結果.故為:男女生中喜歡或不喜歡足球的人數(shù).16.設ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結論,其中你認為正確的是______.
①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結論互否,故正確綜上③⑤兩結論正確故為③⑤17.把下列直角坐標方程或極坐標方程進行互化:
(1)ρ(2cos?-3sin?)+1=0
(2)x2+y2-4x=0.答案:(1)將原極坐標方程ρ(2cosθ-3sinθ)+1=0展開后化為:2ρcosθ-3ρsinθ+1=0,化成直角坐標方程為:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲線的直角坐標方程為x2+y2-4x=0,可得極坐標方程ρ2-4ρcosθ=0,即ρ=4cosθ.18.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為()
A.
B.3
C.2
D.2答案:A19.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.20.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當k=3時兩條直線平行,當k≠3時有2=-24-k≠3
所以
k=5故為:3或5.21.已知點P在曲線C1:x216-y29=1上,點Q在曲線C2:(x-5)2+y2=1上,點R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線的知識可知:C1x216-y29=1的兩個焦點分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C22.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側面積S=π×2×4=8πcm2.故為8π.23.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關系為
______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.24.下列語句不屬于基本算法語句的是()
A.賦值語句
B.運算語句
C.條件語句
D.循環(huán)語句答案:B25.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:026.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因為四邊形的內(nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.27.設隨機變量X~B(10,0.8),則D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C28.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A29.氣象意義上從春季進入夏季的標志為:“連續(xù)5天的日平均溫度均不低于22
(℃)”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進入夏季的地區(qū)有()A.0個B.1個C.2個D.3個答案:①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22,根據(jù)數(shù)據(jù)得出:甲地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)可能為:22,22,24,25,26.其連續(xù)5天的日平均溫度均不低于22.
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24.根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.則肯定進入夏季的地區(qū)有甲、乙、丙三地.故選D.30.語句|x|≤3或|x|>5的否定是()
A.|x|≥3或|x|<5
B.|x|>3或|x|≤5
C.|x|≥3且|x|<5
D.|x|>3且|x|≤5答案:D31.甲、乙、丙、丁四位同學各自對A、B兩個變量的線性相關性作試驗,并用回歸分析方法分別求得相關系數(shù)r與殘差平方和m如表:
則哪位同學的實驗結果體現(xiàn)A、B兩個變量更強的線性相關性()
A.丙
B.乙
C.甲
D.丁答案:C32.利用“直接插入排序法”給按從大到小的順序排序,
當插入第四個數(shù)時,實際是插入哪兩個數(shù)之間(
)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;33.在平面直角坐標系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).
(1)若AB⊥a,且|AB|=5|OA|(O為坐標原點),求向量OB;
(2)若向量AC與向量a共線,當k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當t=8時,n=24;當t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.34.已知定直線l及定點A(A不在l上),n為過點A且垂直于l的直線,設N為l上任意一點,線段AN的垂直平分線交n于B,點B關于AN的對稱點為P,求證:點P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標系,并且連結PA,PN,NB.由題意知PB垂直平分AN,且點B關于AN的對稱點為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點P符合拋物線上點的條件:到定點A的距離和到定直線l的距離相等,∴點P的軌跡為拋物線.35.已知z1=5+3i,z2=5+4i,下列各式中正確的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1與z2為虛數(shù),故不能比較大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故選D.36.根據(jù)給出的程序語言,畫出程序框圖,并計算程序運行后的結果.
答案:程序框圖:模擬程序運行:當j=1時,n=1,當j=2時,n=1,當j=3時,n=1,當j=4時,n=2,…當j=8時,n=2,…當j=11時,n=2,當j=12時,此時不滿足循環(huán)條件,退出循環(huán)程序運行后的結果是:2.37.給出下列四個命題,其中正確的一個是()
A.在線性回歸模型中,相關指數(shù)R2=0.80,說明預報變量對解釋變量的貢獻率是80%
B.在獨立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關系成立的可能性就越大
C.相關指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好
D.線性相關系數(shù)r的絕對值越接近于1,表明兩個隨機變量線性相關性越強答案:D38.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點,且則C的坐標為()
A.
B.
C.
D.答案:C39.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是
______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).40.已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:
表1:
x123f(x)231表2:
x123g(x)321則方程g[f(x)]=x的解集為______.答案:由題意得,當x=1時,g[f(1)]=g[2]=2不滿足方程;當x=2時,g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}41.下列四個命題中,正確的有
個
①;
②;
③,使;
④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個點評:本題考查全稱命題、特稱命題,容易題42.一張紙上畫有一個半徑為R的圓O和圓內(nèi)一個定點A,且OA=a,折疊紙片,使圓周上某一點A′剛好與點A重合.這樣的每一種折法,都留下一條折痕.當A′取遍圓周上所有點時,求所有折痕所在直線上點的集合.答案:對于⊙O上任意一點A′,連AA′,作AA′的垂直平分線MN,連OA′,交MN于點P,則OP+PA=OA′=R.由于點A在⊙O內(nèi),故OA=a<R.從而當點A′取遍圓周上所有點時,點P的軌跡是以O、A為焦點,OA=a為焦距,R(R>a)為長軸的橢圓C.而MN上任一異于P的點Q,都有OQ+QA=OQ+QA′>OA′,故點Q在橢圓C外,即折痕上所有的點都在橢圓C上及C外.反之,對于橢圓C上或外的一點S,以S為圓心,SA為半徑作圓,交⊙O于A′,則S在AA′的垂直平分線上,從而S在某條折痕上.最后證明所作⊙S與⊙O必相交.1°
當S在⊙O外時,由于A在⊙O內(nèi),故⊙S與⊙O必相交;2°
當S在⊙O內(nèi)時(例如在⊙O內(nèi),但在橢圓C外或其上的點S′),取過S′的半徑OD,則由點S′在橢圓C外,故OS′+S′A≥R(橢圓的長軸).即S′A≥S′D.于是D在⊙S′內(nèi)或上,即⊙S′與⊙O必有交點.于是上述證明成立.綜上可知,折痕上的點的集合為橢圓C上及C外的所有點的集合.43.(2x+1)5的展開式中的第3項的系數(shù)是()A.10B.40C.80D.120答案:(2x+1)5的展開式中的第3項為T3=C25(2x)3
×1=80x3,故(2x+1)5的展開式中的第3項的系數(shù)是80,故選C.44.命題“方程|x|=1的解是x=±1”中,使用邏輯詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“或”C.使用了邏輯連接詞“且”D.使用了邏輯連接詞“或”與“且”答案:∵命題“方程|x|=1的解是x=±1”等價于命題“方程|x|=1的解是x=1或x=-1.”∴該命題使用了邏輯連接詞“或”.故選B.45.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個向量的坐標對應成比例,0-2=01,所以,這2個向量是共線向量,故不能作為基底.B、中的2個向量的坐標對應成比例,46=69,所以,這2個向量是共線向量,故不能作為基底.C中的2個向量的坐標對應不成比例,2-6≠-54,所以,這2個向量不是共線向量,故可以作為基底.D、中的2個向量的坐標對應成比例,212=-3-34,這2個向量是共線向量,故不能作為基底.故選C.46.已知a=20.5,,,則a,b,c的大小關系是()
A.a(chǎn)>c>b
B.a(chǎn)>b>c
C.c>b>a
D.c>a>b答案:B47.設i為虛數(shù)單位,若(x+i)(1-i)=y,則實數(shù)x,y滿足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C48.給定兩個長度為1且互相垂直的平面向量OA和OB,點C在以O為圓心的圓弧AB上變動.若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5249.方程x2+ky2=2表示焦點在y軸的橢圓,那么實數(shù)k的取值范圍是
______.答案:橢圓方程化為x22+y22k=1.焦點在y軸上,則2k>2,即k<1.又k>0,∴0<k<1.故為:0<k<150.(x+1)4的展開式中x2的系數(shù)為()A.4B.6C.10D.20答案:(x+1)4的展開式的通項為Tr+1=C4rxr令r=2得T3=C42x2=6x∴展開式中x2的系數(shù)為6故選項為B第2卷一.綜合題(共50題)1.如圖是一個幾何體的三視圖(單位:cm),則這個幾何體的表面積是()A.(7+2)
cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:圖中的幾何體可看成是一個底面為直角梯形的直棱柱.直角梯形的上底為1,下底為2,高為1;棱柱的高為1.可求得直角梯形的四條邊的長度為1,1,2,2.所以此幾何體的表面積S表面=2S底+S側面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故選A.2.(坐標系與參數(shù)方程選做題)在極坐標系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點的極坐標為(2,π4).故為:(2,π4).3.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當a>0時,方程對應的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>14.已知點G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點,且,則的值()
A.3
B.
C.2
D.答案:B5.在同一平面直角坐標系中,直線變成直線的伸縮變換是()A.B.C.D.答案:A解析:解:設直線上任意一點(x′,y′),變換前的坐標為(x,y),則根據(jù)直線變成直線則伸縮變換是,選A6.下列給出的輸入語句、輸出語句和賦值語句
(1)輸出語句INPUT
a;b;c
(2)輸入語句INPUT
x=3
(3)賦值語句3=B
(4)賦值語句A=B=2
則其中正確的個數(shù)是()
A.0個
B.1個
C.2個
D.3個答案:A7.設和為不共線的向量,若2-3與k+6(k∈R)共線,則k的值為()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B8.拋物線y2=4x,O為坐標原點,A,B為拋物線上兩個動點,且OA⊥OB,當直線AB的傾斜角為45°時,△AOB的面積為______.答案:設直線AB的方程為y=x-m,代入拋物線聯(lián)立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因為OA⊥OB,設A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:859.用反證法證明命題“如果a>b,那么a3>b3“時,下列假設正確的是()
A.a(chǎn)3<b3
B.a(chǎn)3<b3或a3=b3
C.a(chǎn)3<b3且a3=b3
D.a(chǎn)3>b3答案:B10.圓x2+y2=1在矩陣10012對應的變換作用下的結果為______.答案:設P(x,y)是圓C:x2+y2=1上的任一點,P1(x′,y′)是P(x,y)在矩陣A=10012對應變換作用下新曲線上的對應點,則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.11.不等式log12(x2-2x-15)>log12(x+13)的解集為______.答案:滿足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,則不等式log12(x2-2x-15)>log12(x+13)的解集為(-4,-3)∪(5,7)故為:(-4,-3)∪(5,7).12.用0.618法確定的試點,則經(jīng)過(
)次試驗后,存優(yōu)范圍縮小為原來的0.6184倍.答案:513.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()
A.
B.
C.
D.
答案:A14.不等式|x-500|≤5的解集是______.答案:因為不等式|x-500|≤5,由絕對值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.15.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1516.關于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B17.函數(shù)f(x)=log2(3x+1)的值域為()
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根據(jù)對數(shù)函數(shù)的定義可知,真數(shù)3x+1>0恒成立,解得x∈R.因此,該函數(shù)的定義域為R,原函數(shù)f(x)=log2(3x+1)是由對數(shù)函數(shù)y=log2t和t=3x+1復合的復合函數(shù).由復合函數(shù)的單調性定義(同増異減)知道,原函數(shù)在定義域R上是單調遞增的.根據(jù)指數(shù)函數(shù)的性質可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故選A.解析:試題分析18.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關系是:相交或相切.故為:相交或相切.19.已知F1、F2為橢圓x225+y29=1的兩個焦點,過F1的直線交橢圓于A、B兩點.若|F2A|+|F2B|=12,則|AB|=______.答案:由橢圓的定義得|AF1|+|AF2|=10|BF1|+|BF2|=10兩式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:820.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關于函數(shù)D(t)的性質敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域為{0,1};有理數(shù)和無理數(shù)正負關于原點對稱,所以函數(shù)D(t)的圖象關于y軸對稱,所以函數(shù)是偶函數(shù);對于不同的有理數(shù)x對應的函數(shù)值相等,所以函數(shù)不是單調函數(shù);因為任取一個非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無理數(shù)為無理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項C不正確.故選C.21.點(1,2)到直線x+2y+5=0的距離為______.答案:點(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2522.設m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D23.在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()
A.0.1
B.0.2
C.0.3
D.0.4答案:C24.已知f(x)是定義域為正整數(shù)集的函數(shù),對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當k=1或2時,不一定有f(k)≥k2成立;對B,應有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D25.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對應關系,A中的2個函數(shù)的值域不同,B中的2個函數(shù)的定義域不同,C中的2個函數(shù)的對應關系不同,只有D的2個函數(shù)的定義域、值域、對應關系完全相同,故選D.26.選修4-2:矩陣與變換
已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.27.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48028.下列表述正確的是()
①歸納推理是由部分到整體的推理;
②歸納推理是由一般到一般的推理;
③演繹推理是由一般到特殊的推理;
④類比推理是由特殊到一般的推理;
⑤類比推理是由特殊到特殊的推理.
A.①②③
B.②③④
C.②④⑤
D.①③⑤答案:D29.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.30.一個算法的流程圖如圖所示,則輸出的S值為______.答案:根據(jù)程序框圖,題意為求:s=2+4+6+8,計算得:s=20,故為:20.31.如圖,⊙O與⊙O′交于
A,B,⊙O的弦AC與⊙O′相切于點A,⊙O′的弦AD與⊙O相切于A點,則下列結論中正確的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.無法確定
答案:B32.四支足球隊爭奪冠、亞軍,不同的結果有()
A.8種
B.10種
C.12種
D.16種答案:C33.如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()
A.y2=x
B.y2=9x
C.y2=x
D.y2=3x
答案:D34.兩條直線x-y+6=0與x+y+6=0的夾角為()
A.
B.
C.0
D.答案:D35.設d1與d2都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關于d1與d2的敘述正確的是()A.d1=d2B.d1與d2同向C.d1∥d2D.d1與d2有相同的位置向量答案:根據(jù)直線的方向向量定義,把直線上的非零向量以及與之共線的非零向量叫做直線的方向向量.因此,線Ax+By+C=0(AB≠0)的方向向量都應該是共線的故選C.36.點O是四邊形ABCD內(nèi)一點,滿足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設BC中點為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點都在BC邊的中線上,且|AO|=2|OE|,所以O為△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.37.在直角坐標系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標系中,38.設S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當n=2時,n2=4故S(2)=12+13+14故選D39.在平面直角坐標系xOy中,已知拋物線關于x軸對稱,頂點在原點O,且過點P(2,4),則該拋物線的方程是______.答案:設所求拋物線方程為y2=ax,依題意42=2a∴a=8,故所求為y2=8x.故為:y2=8x40.在平面直角坐標系xOy中,設F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線為C,關于曲線C有下列命題:
①曲線C是以F1、F2為焦點的橢圓的一部分;
②曲線C關于x軸、y軸、坐標原點O對稱;
③若P是上任意一點,則PF1+PF2≤10;
④若P是上任意一點,則PF1+PF2≥10;
⑤曲線C圍成圖形的面積為30.
其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯,②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤41.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,則x的值為()
A.8
B.4
C.2
D.0答案:B42.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.43.下列在曲線上的點是(
)
A.
B.
C.
D.答案:B44.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當1+ab<0時,∵>0,∴不等式1+ab<成立.從而原不等式成立.當1+ab≥0時,要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.45.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.46.已知,棱長都相等的正三棱錐內(nèi)接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則
A、以上四個圖形都是正確的
B、只有(2)(4)是正確的
C、只有(4)是錯誤的
D、只有(1)(2)是正確的答案:C47.考慮坐標平面上以O(0,0),A(3,0),B(0,4)為頂點的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請問下列哪些選項是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(32,2),此點在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標為(1,1),此點在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).48.已知=(1,2),=(x,1),當(+2)⊥(2-)時,實數(shù)x的值為(
)
A.6
B.2
C.-2
D.或-2答案:D49.橢圓有這樣的光學性質:從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一焦點.一水平放置的橢圓形臺球盤,F(xiàn)1,F(xiàn)2是其焦點,長軸長2a,焦距為2c.一靜放在F1點處的小球(半徑忽略不計),受擊打后沿直線運動(不與直線F1F2重合),經(jīng)橢圓壁反彈后再回到點F1時,小球經(jīng)過的路程是()
A.4c
B.4a
C.2(a+c)
D.4(a+c)答案:B50.過橢圓4x2+y2=1的一個焦點F1的直線與橢圓交于A,B兩點,則A與B和橢圓的另一個焦點F1構成的△ABF2的周長為()
A.2
B.2
C.4
D.8答案:C第3卷一.綜合題(共50題)1.下列說法中正確的有()
①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準確.
④向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個極端值的影響,平均數(shù)受樣本中的每一個數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準確.正確向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學模型是幾何概型,故④不正確,故選B.2.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個函數(shù)與函數(shù)y=x
(x≥0)有相同圖象時,這兩個函數(shù)應是同一個函數(shù).A中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).B中的函數(shù)和函數(shù)y=x
(x≥0)具有相同的定義域、值域、對應關系,故是同一個函數(shù).C中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).D中的函數(shù)和函數(shù)y=x
(x≥0)的定義域不同,故不是同一個函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x
(x≥0)是同一個函數(shù),具有相同的圖象,故選B.3.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()
A.0
B.
C.
D.答案:B4.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°5.過點M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設所求直線與已知直線l1,l2分別交于A、B兩點.∵點B在直線l2:2x+y-8=0上,故可設B(t,8-2t).又M(0,1)是AB的中點,由中點坐標公式得A(-t,2t-6).∵A點在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.6.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±27.從裝有2個紅球和2個白球的口袋內(nèi),任取2個球,那么下面互斥而不對立的兩個事件是()
A.恰有1個白球;恰有2個白球
B.至少有1個白球;都是白球
C.至少有1個白球;
至少有1個紅球
D.至少有1個白球;
都是紅球答案:A8.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為139.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當1+ab<0時,∵>0,∴不等式1+ab<成立.從而原不等式成立.當1+ab≥0時,要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.10.設向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為
______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:211.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()
A.k1<k2<k3
B.k3<k1<k2
C.k2<k1<k3
D.k3<k2<k1
答案:C12.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()
A.逗號
B.空格
C.分號
D.頓號答案:A13.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標準方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.14.某超市推出如下優(yōu)惠方案:
(1)一次性購物不超過100元不享受優(yōu)惠;
(2)一次性購物超過100元但不超過300元的一律九折;
(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.
如果他一次性購買與上兩次相同的商品,則應付款______.答案:該人一次性購物付款80元,據(jù)條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應付款316元或288元.故為316元或288元.15.下列在曲線上的點是()
A.
B.
C.
D.答案:D16.函數(shù)y=a|x|(a>1)的圖象是()
A.
B.
C.
D.
答案:B17.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,若f(c)=0,且0<x<c時,f(x)>0
(1)證明:1a是f(x)的一個根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,f(x)=0的兩個根x1,x2滿足x1x2=ca,又f(c)=0,不妨設x1=c∴x2=1a,即1a是f(x)=0的一個根.(2)假設1a<c,又1a>0由0<x<c時,f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個根不相等∴1a≠c,只有1a>c18.命題“所以奇數(shù)的立方是奇數(shù)”的否定是()
A.所有奇數(shù)的立方不是奇數(shù)
B.不存在一個奇數(shù),它的立方不是奇數(shù)
C.存在一個奇數(shù),它的立方不是奇數(shù)
D.不存在一個奇數(shù),它的立方是奇數(shù)答案:C19.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.20.(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.21.
如圖,平面內(nèi)向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2
,則λ等()
A.
B.1
C.
D.2
答案:D22.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:423.已知拋物線y2=4x上兩定點A、B分別在對稱軸兩側,F(xiàn)為焦點,且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點P,使S△ABP最大,并求面積最大值.答案:不妨設點A在第一象限,B點在第四象限.如圖.拋物線的焦點F(1,0),點A在第一象限,設A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設在拋物線AOB這段曲線上任一點P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0
24+y0-4|5=|12(y0+1)2-92|5
…(9分)所以當y0=-1時,d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274
…(11分)此時P點坐標為(14,-1).…(12分).24.已知f(x)是定義域為正整數(shù)集的函數(shù),對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當k=1或2時,不一定有f(k)≥k2成立;對B,應有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D25.已知l1、l2是過點P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個交點,分別為A1、B1和A2、B2.
(1)求l1的斜率k1的取值范圍;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).26.行駛中的汽車,在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關系:s=(n為常數(shù),且n∈N),做了兩次剎車試驗,有關試驗數(shù)據(jù)如圖所示,其中,
(1)求n的值;
(2)要使剎車距離不超過12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因為v≥0,所以0≤v≤60,即行駛的最大速度為60km/h。27.己知△ABC的外心、重心、垂心分別為O,G,H,若,則λ=()
A.3
B.2
C.
D.答案:A28.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構成一個三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是從五條線段中取三條共有C53種結果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結果,∴由古典概型公式得到P=3C35=310,故選B.29.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.30.(選做題)
設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實數(shù)a的取值范圍為.31.若{、、}為空間的一組基底,則下列各項中,能構成基底的一組向量是[
]A.,+,﹣
B.,+,﹣
C.,+,﹣
D.+,﹣,+2答案:C32.已知復數(shù)z滿足(1-i)?z=1,則z=______.答案:∵復數(shù)z滿足(1-i)?z=1,∴z=11-i=1+i(1-i)(1+i)=12+12i,故為12+i2.33.在極坐標系中,點A的極坐標為(2,0),直線l的極坐標方程為ρ(cosθ+sinθ)+2=0,則點A到直線l的距離為______.答案:由題意得點A(2,0),直線l為
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴點A到直線l的距離為
|2+0+2|2=22,故為22.34.設α∈[0,π],則方程x2sinα+y2cosα=1不能表示的曲線為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:C35.已知拋物線y2=4x的焦點為F,準線與x軸的交點為M,N為拋物線上的一點,且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設N到準線的距離等于d,由拋物線的定義可得d=|NF|,
由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.36.已知點P是以F1、F2為左、右焦點的雙曲線(a>0,b>0)左支上一點,且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()
A.
B.
C.
D.答案:D37.已知復數(shù)a+bi,其中a,b為0,1,2,…,9這10個數(shù)字中的兩個不同的數(shù),則不同的虛數(shù)的個數(shù)為()A.36B.72C.81D.90答案:當a取0時,b有9種取法,當a不取0時,a有9種取法,b不能取0和a取的數(shù),故b有8種取法,∴組成不同的虛數(shù)個數(shù)為9+9×8=81種,故選C.38.對于函數(shù)y=f(x),在給定區(qū)間上有兩個數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調性不能確定答案:解析:由單調性定義可知,不能用特殊值代替一般值.故選D.39.給出的下列幾個命題:
①向量共面,則它們所在的直線共面;
②零向量的方向是任意的;
③若則存在唯一的實數(shù)λ,使
其中真命題的個數(shù)為()
A.0
B.1
C.2
D.3答案:B40.Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()
A.線段或銳角三角形
B.線段與直角三角形
C.線段或鈍角三角形
D.線段、銳角三角形、直角三角形或鈍角三角形答案:B41.給定橢圓C:x2a2+y2b2=1(a>b>0),稱圓心在原點O、半徑是a2+b2的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(2,0),其短軸的一個端點到點F的距離為3.
(1)求橢圓C和其“準圓”的方程;
(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024美容院加盟合作協(xié)議書(五年有效期)
- 2025年煙草產(chǎn)品采購合同模板3篇
- 二零二五年度地鐵隧道鋼筋供應及安裝服務合同2篇
- 2025年度國家級科研項目合作勞務派遣管理協(xié)議3篇
- 二零二五年度文化產(chǎn)業(yè)園開發(fā)與運營合同文化產(chǎn)業(yè)3篇
- 2025年度云計算服務100%股權轉讓合同3篇
- 代運營服務商2025年度店鋪經(jīng)營狀況評估合同2篇
- 2025年度零擔運輸合同供應鏈金融合作合同4篇
- 年度ZNO基變阻器材料產(chǎn)業(yè)分析報告
- 年度汽油發(fā)動機電控裝置市場分析及競爭策略分析報告
- 山東省濟南市2023-2024學年高二上學期期末考試化學試題 附答案
- 大唐電廠采購合同范例
- 國潮風中國風2025蛇年大吉蛇年模板
- GB/T 18724-2024印刷技術印刷品與印刷油墨耐各種試劑性的測定
- IEC 62368-1標準解讀-中文
- 15J403-1-樓梯欄桿欄板(一)
- 2024年中考語文名句名篇默寫分類匯編(解析版全國)
- 新煤礦防治水細則解讀
- 醫(yī)院領導班子集體議事決策制度
- 解讀2024年《學紀、知紀、明紀、守紀》全文課件
- 農(nóng)機維修市場前景分析
評論
0/150
提交評論