




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年云南林業(yè)職業(yè)技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.意大利數學家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應的程序.答案:見解析解析:解:根據題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數是前面兩個月兔子對數的和,設第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應變第個月兔子的對數(的舊值),變量的新值應變?yōu)榈趥€月兔子的對數(的舊值),這樣,用求出變量的新值就是個月兔子的數,依此類推,可以得到一個數序列,數序列的第項就是年底應有兔子對數,我們可以先確定前兩個月的兔子對數均為,以此為基準,構造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND2.實數變量m,n滿足m2+n2=1,則坐標(m+n,mn)表示的點的軌跡是()
A.拋物線
B.橢圓
C.雙曲線的一支
D.拋物線的一部分答案:A3.用黃金分割法尋找最佳點,試驗區(qū)間為[1000,2000],若第一個二個試點為好點,則第三個試點應選在(
)。答案:12364.一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數X的數學期望E(X).答案:(I)“恰好第2次中獎“即為“第一次摸到的2個白球,第二次至少有1個紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.5.在極坐標系中,若等邊三角形ABC(頂點A,B,C按順時針方向排列)的頂點A,B的極坐標分別為(2,π6),(2,7π6),則頂點C的極坐標為______.答案:如圖所示:由于A,B的極坐標(2,π6),(2,7π6),故極點O為線段AB的中點.故等邊三角形ABC的邊長為4,AB邊上的高(即點C到AB的距離)OC等于23.設點C的極坐標為(23,π6+π2),即(23,2π3),故為(23,2π3).6.直線kx-y+1=3k,當k變動時,所有直線都通過定點()
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C7.已知某離散型隨機變量ξ的數學期望Eξ=76,ξ的分布列如下,則a=______.
答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:138.某超市推出如下優(yōu)惠方案:
(1)一次性購物不超過100元不享受優(yōu)惠;
(2)一次性購物超過100元但不超過300元的一律九折;
(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.
如果他一次性購買與上兩次相同的商品,則應付款______.答案:該人一次性購物付款80元,據條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應付款316元或288元.故為316元或288元.9.關于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B10.某總體容量為M,其中帶有標記的有N個,現用簡單隨機抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標記的個數估計為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標記的魚所占比例是NM,故樣本中帶有標記的個數估計為mNM,故選A.11.設a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.12.刻畫數據的離散程度的度量,下列說法正確的是()
(1)應充分利用所得的數據,以便提供更確切的信息;
(2)可以用多個數值來刻畫數據的離散程度;
(3)對于不同的數據集,其離散程度大時,該數值應越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C13.如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若則下列向量中與相等的向量是()
A.
B.
C.
D.
答案:A14.已知雙曲線的漸近線方程為2x±3y=0,F(0,-5)為雙曲線的一個焦點,則雙曲線的方程為()
A.
B.
C.
D.答案:B15.若4名學生和3名教師站在一排照相,則其中恰好有2名教師相鄰的站法有______種.(用數字作答)答案:4名學生和3名教師站在一排照相,則其中恰好有2名教師相鄰,所以第一步應先取兩個老師且綁定有C23×A22=6種方法,第二步將四名學生全排列,共有4!=24種方法,第三步將綁定的兩位老師與剩下的一位老師看作兩個元素,插入四個學生隔開的五個空中,共有A25=20種方法故總的站法有6×24×20=2880種故為288016.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:10217.有這樣一段“三段論”推理,對于可導函數f(x),大前提:如果f’(x0)=0,那么x=x0是函數f(x)的極值點;小前提:因為函數f(x)=x3在x=0處的導數值f’(0)=0,結論:所以x=0是函數f(x)=x3的極值點.以上推理中錯誤的原因是______錯誤(填大前提、小前提、結論).答案:∵大前提是:“對于可導函數f(x),如果f'(x0)=0,那么x=x0是函數f(x)的極值點”,不是真命題,因為對于可導函數f(x),如果f'(x0)=0,且滿足當x>x0時和當x<x0時的導函數值異號時,那么x=x0是函數f(x)的極值點,∴大前提錯誤,故為:大前提.18.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個動點,OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點)上存在與AB'平行的切線,所以λ∈(12,2).故選C.19.以下坐標給出的點中,在曲線x=sin2θy=sinθ+cosθ上的點是()A.(12,-2)B.(2,3)C.(-34,12)D.(1,3)答案:把曲線x=sin2θy=sinθ+cosθ消去參數θ,化為普通方程為y2=1+x(-1≤x≤1),結合所給的選項,只有C中的點在曲線上,故選C.20.若A∩B=A∪B,則A______B.答案:設有集合W=A∪B=B∩C,根據并集的性質,W=A∪B?A?W,B?W,根據交集的性質,W=A∩B?W?A,W?B由集合子集的性質,A=B=W,故為:=.21.下列各圖中,可表示函數y=f(x)的圖象的只可能是()A.
B.
C.
D.
答案:根據函數的定義知:自變量取唯一值時,因變量(函數)有且只有唯一值與其相對應.∴從圖象上看,任意一條與x軸垂直的直線與函數圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.22.已知O是正方形ABCD對角線的交點,在以O,A,B,C,D這5點中任意一點為起點,另一點為終點的所有向量中,
(1)與BC相等的向量有
______;
(2)與OB長度相等的向量有
______;
(3)與DA共線的向量有
______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有
CB、BC.23.兩個正方體M1、M2,棱長分別a、b,則對于正方體M1、M2有:棱長的比為a:b,表面積的比為a2:b2,體積比為a3:b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是()
A.兩個球
B.兩個長方體
C.兩個圓柱
D.兩個圓錐答案:A24.有一批數量很大的產品,其中次品率是20%,對這批產品進行抽查,每次抽出一件,如果抽出次品則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數最多不超過9次,那么抽查次數為9次的概率為(
)
A.0.89
B.0.88×0.2
C.0.88
D.0.28×0.8答案:C25.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標是
______.答案:根據拋物線方程可求得焦點坐標為(0,1)根據拋物線定義可知點p到焦點的距離與到準線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標是(±6,9)故為:(±6,9)26.已知x與y之間的一組數據是()
x0123y2468則y與x的線性回歸方程y=bx+a必過點()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根據所給的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴這組數據的樣本中心點是(1.5,5)∵線性回歸直線一定過樣本中心點,∴y與x的線性回歸方程y=bx+a必過點(1.5,5)故選D.27.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.28.(理)下列以t為參數的參數方程中表示焦點在y軸上的橢圓的是()
A.
B.(a>b>0)
C.
D.
答案:C29.設橢圓的左焦點為F,AB為橢圓中過點F的弦,試分析以AB為直徑的圓與橢圓的左準線的位置關系.答案:設M為弦AB的中點(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準線l上的射影(如圖).由圓錐曲線的共同性質得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準線相離.30.由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,以這些棱錐的頂點為頂點的凸多面體的全面積是______.答案:由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,共可作6個,得到6個頂點,圍成一個正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點的距離應為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個側面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a231.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()
A.α-
B.-α
C.α-
D.-α答案:D32.復數1+i(i為虛數單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.33.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.
(1)試用向量方法證明E、F、G、H四點共面;
(2)試判斷平面EFGH與平面ABCD的位置關系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)
分別延長PE、PF、PG、PH交對邊于M、N、Q、R點,因為E、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點,順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點,∴平面EFGH∥平面ABCD.34.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48035.下圖是由A、B、C、D中的哪個平面圖旋轉而得到的(
)答案:A36.點O是四邊形ABCD內一點,滿足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設BC中點為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點都在BC邊的中線上,且|AO|=2|OE|,所以O為△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.37.已知函數f(x)=x2+px+q與函數y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)()
A.均為正值
B.均為負值
C.一正一負
D.至少有一個等于0答案:D38.如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且
DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7239.已知點D是△ABC的邊BC的中點,若記AB=a,AC=b,則用a,b表示AD為______.答案:以AB,AC為臨邊作平行四邊形ACEB,連接其對角線AE、BC交與點D,易知D是△ABC的邊BC的中點,且D是AE的中點,如圖:由向量的平行四邊形法則可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故為:AD=12(a+b)40.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.41.如圖所示,有兩個獨立的轉盤(A)、(B),其中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉盤玩游戲,規(guī)則是:依次隨機轉動兩個轉盤再隨機停下(指針固定不動,當指針恰好落在分界線時,則這次轉動無效,重新開始)為一次游戲,記轉盤(A)指針所對的數為X轉盤(B)指針對的數為Y設X+Yξ,每次游戲得到的獎勵分為ξ分.
(1)求X<2且Y>1時的概率
(2)某人玩12次游戲,求他平均可以得到多少獎勵分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎勵分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎勵分為12×Eξ=50.42.已知sint+cost=1,設s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當cost=0,sint=1時,s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當cost=1,sint=0時,s=cost+isint=1則f(s)=1+s+s2+…sn=n+143.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若從散點圖分析,y與x線性相關,且
y=0.95x+
a,則
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴這組數據的樣本中心點是(2,4.5)∵y與x線性相關,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故選A.44.某校為提高教學質量進行教改實驗,設有試驗班和對照班.經過兩個月的教學試驗,進行了一次檢測,試驗班與對照班成績統計如下的2×2列聯表所示(單位:人),則其中m=______,n=______.
80及80分以下80分以上合計試驗班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.45.直線x3+y4=t被兩坐標軸截得的線段長度為1,則t的值是
______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標軸截得的線段長度為(3t)2+(4t)2=|5t|=1所以t=±15故為±1546.已知直線ax+by+c=0(a,b,c都是正數)與圓x2+y2=1相切,則以a,b,c為三邊長的三角形()
A.是銳角三角形
B.是鈍角三角形
C.是直角三角形
D.不存在答案:C47.拋物線y=14x2的焦點坐標是______.答案:拋物線y=14x2
即x2=4y,∴p=2,p2=1,故焦點坐標是(0,1),故為(0,1).48.將兩個數a=8,b=17交換,使a=17,b=8,下面語句正確一組是()
A.
B.
C.
D.
答案:B49.圖是正方體平面展開圖,在這個正方體中
①BM與ED垂直;
②DM與BN垂直.
③CN與BM成60°角;④CN與BE是異面直線.
以上四個命題中,正確命題的序號是______.答案:由已知中正方體的平面展開圖,我們可以得到正方體的直觀圖如下圖所示:由正方體的幾何特征可得:①BM與ED垂直,正確;
②DM與BN垂直,正確;③CN與BM成60°角,正確;④CN與BE平行,故CN與BE是異面直線,錯誤;故為:①②③50.點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是______.答案:設圓上任意一點為A(x1,y1),AP中點為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=1第2卷一.綜合題(共50題)1.設A=xn+x-n,B=xn-1+x1-n,當x∈R+,n∈N+時,求證:A≥B.答案:證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得當x≥1時,x-1≥0,x2n-1-1≥0;當x<1時,x-1<0,x2n-1<0,即x-1與x2n-1-1同號.∴A-B≥0.∴A≥B.2.(理)在極坐標系中,半徑為1,且圓心在(1,0)的圓的方程為()
A.ρ=sinθ
B.ρ=cosθ
C.ρ=2sinθ
D.ρ=2cosθ答案:D3.已知實數x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵實數x、y滿足(x-2)2+y2+(x+2)2+y2=6,∴點(x,y)的軌跡是橢圓,其方程為x29+y25=1,所以可設x=3cosθ,y=5sinθ,則z=6cosθ+5sinθ=41sin(θ+
β)≤41,∴2x+y的最大值等于41.故為:414.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,一學生到達該路口時,見到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個那可能事件的概率,試驗發(fā)生包含的事件是總的時間長度為30+5+40=75秒,設紅燈為事件A,滿足條件的事件是紅燈的時間為30秒,根據等可能事件的概率得到出現紅燈的概率P(A)=構成事件A的時間長度總的時間長度=3075=25.故選A.5.某班試用電子投票系統選舉班干部候選人.全班k名同學都有選舉權和被選舉權,他們的編號分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權)按“0”,令aij=1,第i號同學同意第j號同學當選.0,第i號同學不同意第j號同學當選.其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學當選的人數為()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學生是否同意第1號同學當選依次由a11,a21,a31,…,ak1來確定(aij=1表示同意,aij=0表示不同意或棄權),是否同意第2號同學當選依次由a12,a22,…,ak2確定,而是否同時同意1,2號同學當選依次由a11a12,a21a22,…,ak1ak2確定,故同時同意1,2號同學當選的人數為a11a12+a21a22+…+ak1ak2,故選C.6.某學校為了解高一男生的百米成績,隨機抽取了50人進行調查,如圖是這50名學生百米成績的頻率分布直方圖.根據該圖可以估計出全校高一男生中百米成績在[13,14]內的人數大約是140人,則高一共有男生______人.
答案:第三和第四個小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績在[13,14]內的頻率為:0.7,因為根據該圖可以估計出全校高一男生中百米成績在[13,14]內的人數大約是140人,則高一共有男生1400.7=200人.故為:200.7.直線和圓交于兩點,則的中點
坐標為(
)A.B.C.D.答案:D解析:,得,中點為8.空間向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,則y+z=______.答案:∵n⊥a,n⊥b,∴n?a=0n?b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故為3.9.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.10.如圖,O為直線A0A2013外一點,若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點的距離相等,設OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結果為______.答案:設A0A2013的中點為A,則A也是A1A2012,…A1006A1007的中點,由向量的中點公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)11.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A12.函數y=f(x)對任意實數x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達式并用數學歸納法證明你的結論;
(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數學歸納法證明之.①當n=1時猜想成立.②假設n=k時猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時猜想也成立.對于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設n=k(k∈N*)時命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).13.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組
x-
y=1x+y=3解之得x=2y=1故為x=2y=114.設雙曲線的焦點在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()
A.5
B.
C.
D.答案:C15.將兩粒均勻的骰子各拋擲一次,觀察向上的點數,計算:
(1)共有多少種不同的結果?并試著列舉出來.
(2)兩粒骰子點數之和等于3的倍數的概率;
(3)兩粒骰子點數之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結果,根據分步計數原理,所有可能結果共有6×6=36種.
…(4分)(2)兩粒骰子點數之和等于3的倍數的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個結果,因此,兩粒骰子點數之和等于3的倍數的概率是1236=13.
…(8分)(3)兩粒骰子點數之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點數之和為4或5的概率為736.
…(12分)16.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展開式中x的系數為13,則x2的系數為()A.31B.40C.31或40D.71或80答案:(1+2x)m的展開式中x的系數為2Cm1=2m,(1+3x)n的展開式中x的系數為3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展開式中的x2系數為22Cm2,(1+3x)n的展開式中的x2系數為32Cn2∴當n=1m=5時,x2的系數為22Cm2+32Cn2=40當n=3m=2時,x2的系數為22Cm2+32Cn2=31故選C.17.已知命題p:所有有理數都是實數,命題q:正數的對數都是負數,則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.18.若拋物線y2=2px(p>0)的焦點與雙曲線的右焦點重合,則p的值為()
A.2
B.4
C.8
D.4答案:C19.動點P到直線x+2=0的距離減去它到M(1,0)的距離之差等于1,則動點P的軌跡是______.答案:將直線x+2=0向右平移1個長度單位得到直線x+1=0,則動點到直線x+1=0的距離等于它到M(1,0)的距離,由拋物線定義知:點P的軌跡是以點M為焦點的拋物線.:以點M為焦點以x=-1為準線的拋物線.20.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,FC.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內接于圓,∴∠DAC=∠FBC;
…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6
…10′21.已知曲線C的參數方程是(θ為參數),曲線C不經過第二象限,則實數a的取值范圍是()
A.a≥2
B.a>3
C.a≥1
D.a<0答案:A22.設x,y∈R,且滿足x2+y2=1,求x+y的最大值為()
A.
B.
C.2
D.1答案:A23.已知向量OA=(2,3),OB=(4,-1),P是線段AB的中點,則P點的坐標是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由線段的中點公式可得OP=12(OA+OB)=(3,1),故P點的坐標是(3,1),故選B.24.如圖程序輸出的結果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B25.不等式log2(x+1)<1的解集為()
A.{x|0<x<1}
B.{x|-1<x≤0}
C.{x|-1<x<1}
D.{x|x>-1}答案:C26.(a+b)6的展開式的二項式系數之和為______.答案:根據二項式系數的性質:二項式系數和為2n所以(a+b)6展開式的二項式系數之和等于26=64故為:64.27.“若x、y全為零,則xy=0”的否命題為______.答案:由于“全為零”的否定為“不全為零”,所以“若x、y全為零,則xy=0”的否命題為“若x、y不全為零,則xy≠0”.故為:若x、y不全為零,則xy≠0.28.已知直線l的斜率為k=-1,經過點M0(2,-1),點M在直線上,以M0M的數量t為參數,則直線l的參數方程為______.答案:∵直線l經過點M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數方程為x=2+tcos3π4y=-1+tsin3π4
(t為參數);即為x=2-22ty=-1+22t(t為參數).故為:x=2-22ty=-1+22t(t為參數).29.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設M(x,y)為所求軌跡上任一點,則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.30.已知e1
,
e2是夾角為60°的兩個單位向量,且向量a=e1+2e2,則|a|=______.答案:由題意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故為:731.某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是10位同學參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學恰好被排在一起而二班的2位同學沒有被排在一起的演講的順序”可通過如下步驟:①將一班的3位同學“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個對象與其它班的5位同學共6個對象排成一列,有A66種方法;③在以上6個對象所排成一列的7個間隙(包括兩端的位置)中選2個位置,將二班的2位同學插入,有A72種方法.根據分步計數原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.32.已知0≤θ<2π,復數icosθ+isinθ>0,則θ的值是()A.π2B.3π2C.(0,π)內的任意值D.(0,π2)∪(3π2,2π)內的任意值答案:復數icosθ+isinθ>0,可得icosθ+sinθ>0,因為0≤θ<2π,所以θ=π2.故選A.33.閱讀如圖所示的程序框,若輸入的n是100,則輸出的變量S的值是()A.5051B.5050C.5049D.5048答案:根據流程圖所示的順序,該程序的作用是累加并輸出S=100+99+98+…+2,∵100+99+98+…+2=5049,故選C.34.已知A(4,1,3),B(2,-5,1),C是線段AB上一點,且,則C點的坐標為()
A.
B.
C.
D.答案:C35.已知a≠0,證明關于x的方程ax=b有且只有一個根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個根x=ba,另一方面,假設方程ax=b還有一個根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設矛盾,故方程ax=b只有一個根.綜上所述,方程ax=b有且只有一個根.36.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,
cos〈,〉=.
(1)建立適當的空間坐標系,寫出點E的坐標;
(2)在平面PAD內求一點F,使EF⊥平面PCB.答案:(1)點E的坐標是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標是(1,1,1).(2)∵F∈平面PAD,∴可設F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.37.已知原點O(0,0),則點O到直線4x+3y+5=0的距離等于
______.答案:利用點到直線的距離公式得到d=|5|42+32=1,故為1.38.如圖中的陰影部分用集合表示為______.答案:由已知中陰影部分所表示的集合元素滿足是A的元素且C的元素,或是B的元素”,故陰影部分所表示的集合是(A∪C)∩(CUB)故為:B∪(A∩C)39.直線3x+5y-1=0與4x+3y-5=0的交點是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C40.正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當R、r滿足條件______時,⊙A與⊙C有2個交點(
)
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<答案:B41.已知圖形F上的點A按向量平移前后的坐標分別是和,若B()是圖形F上的又一點,則在F按向量平移后得到的圖形F,上B,的坐標是(
)A.B.C.D.答案:選D解析:設向量,則平移公式為依題意有∴平移公式為將B點坐標代入可得B,點的坐標為.所以選D.42.如圖,割線PAB經過圓心O,PC切圓O于點C,且PC=4,PB=8,則△PBC的外接圓的面積為______.答案:∵PC切圓O于點C,∴根據切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π43.拋物線的頂點在原點,焦點與橢圓=1的一個焦點重合,則拋物線方程是()
A.x2=±8y
B.y2=±8x
C.x2=±4y
D.y2=±4x答案:A44.設隨機事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.45.拋物線y=14x2的焦點坐標是______.答案:拋物線y=14x2
即x2=4y,∴p=2,p2=1,故焦點坐標是(0,1),故為(0,1).46.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()
A.{2,1}
B.{(2,1)}
C.{1,2}
D.{(1,2)}答案:D47.已知點M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.48.如圖所示,已知A、B、C三點不共線,O為平面ABC外的一點,若點M滿足
(1)判斷三個向量是否共面;
(2)判斷點M是否在平面ABC內.答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個向量的基線又有公共點M,∴M、A、B、C共面,即點M在平面ABC內,49.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.50.函數y=ax2+1的圖象與直線y=x相切,則a=______.答案:設切點為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.第3卷一.綜合題(共50題)1.若不等式的解集,則實數=___________.答案:-42.擬定從甲地到乙地通話m分鐘的電話費由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數,若通話費為10.6元,則通話時間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].3.若實數X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D4.若定義運算a⊕b=b,a<ba,a≥b則函數f(x)=2x⊕(12)x的值域為______(用區(qū)間表示).答案:由題意畫出f(x)=2x?(12)x的圖象(實線部分),由圖可知f(x)的值域為[1,+∞).故為:[1,+∞).5.在平面直角坐標系下,曲線C1:x=2t+2ay=-t(t為參數),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點,則實數a的取值范圍
______.答案:∵曲線C1:x=2t+2ay=-t(t為參數),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點,∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.6.①某尋呼臺一小時內收到的尋呼次數X;
②長江上某水文站觀察到一天中的水位X;
③某超市一天中的顧客量X.
其中的X是連續(xù)型隨機變量的是()
A.①
B.②
C.③
D.①②③答案:B7.如圖,F是定直線l外的一個定點,C是l上的動點,有下列結論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當的坐標系,求出該拋物線的方程;
(Ⅱ)對以上結論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據)答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點為原點,KF所在直線為x軸建立平面直角坐標系如圖1,并設|KF|=p,則可得該拋物線的方程為
y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設PQ中點為M,P、Q、M在拋物線準線l上的射影分別為A、B、D,∵PQ是拋物線過焦點F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點F的直線與橢圓交于P、Q兩點,則以PQ為直徑的圓與橢圓相應的準線l相離”.此命題為真命題,證明如下:證明:設PQ中點為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點F的直線與雙曲線交于P、Q兩點,則以PQ為直徑的圓與雙曲線相應的準線l相交”.此命題為真命題,證明如下:證明:設PQ中點為M,橢圓的離心率為e,則e>1,P、Q、M在相應準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準線l相交.8.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個B.2個C.4個D.8個答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個,故選C.9.一口袋內裝有5個黃球,3個紅球,現從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現10次時停止,停止時取球的次數ξ是一個隨機變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故為C911(38)10(58)210.若90°<θ<180°,曲線x2+y2sinθ=1表示()
A.焦點在x軸上的雙曲線
B.焦點在y軸上的雙曲線
C.焦點在x軸上的橢圓
D.焦點在y軸上的橢圓答案:D11.一射手對靶射擊,直到第一次命中為止每次命中的概率為0.6,現有4顆子彈,命中后的剩余子彈數目ξ的期望為()
A.2.44
B.3.376
C.2.376
D.2.4答案:C12.若函數y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當0<a<1時函數y=ax在[0,1]上為單調減函數∴函數y=ax在[0,1]上的最大值與最小值分別為1,a∵函數y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當a>1時函數y=ax在[0,1]上為單調增函數∴函數y=ax在[0,1]上的最大值與最小值分別為a,1∵函數y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.13.曲線x=sinθy=sin2θ(θ為參數)與直線y=a有兩個公共點,則實數a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.14.設=(3,4),=(sinα,cosα),且⊥,則tanα的值為()
A.
B.-
C.
D.-答案:D15.已知在△ABC和點M滿足
MA+MB+MC=0,若存在實數m使得AB+AC=mAM成立,則m=______.答案:由點M滿足MA+MB+MC=0,知點M為△ABC的重心,設點D為底邊BC的中點,則AM=23AD=23×
12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:316.若關于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實數m的取值范圍是______.答案:關于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當m-1≠0時(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)17.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3518.同時擲兩顆骰子,得到的點數和為4的概率是______.答案:同時擲兩顆骰子得到的點數共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11219.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個數的大小關系是:______(用符號“>”連接這三個字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.20.命題“若a,b都是奇數,則a+b是偶數”的逆否命題是()A.若a+b不是偶數,則a,b都不是奇數B.若a+b不是偶數,則a,b不都是奇數C.若a+b是偶數,則a,b都是奇數D.若a+b是偶數,則a,b不都是奇數答案:“a,b都是奇數”的否定是“a,b不都是奇數”,“a+b是偶數”的否定是“a+b不是偶數”,故命題“若a,b都是奇數,則a+b是偶數”的逆否命題是“若a+b不是偶數,則a,b不都是奇數”.故選B.21.如圖所示,I為△ABC的內心,求證:△BIC的外心O與A、B、C四點共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點共圓.22.已知圖所示的矩形,其長為12,寬為5.在矩形內隨同地措施1000顆黃豆,數得落在陰影部分的黃豆數為550顆.則可以估計出陰影部分的面積約為______.答案:∵矩形的長為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.23.拋物線y=3x2的焦點坐標是______.答案:化為標準方程為x2=13y,∴2p=13,∴p2=
112,∴焦點坐標是(0,112).故為(0,112)24.設雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設a=2k,b=3k,則c=13k,∴e=132.故為:133或13225.已知A(1,1),B(2,4),則直線AB的斜率為()
A.1
B.2
C.3
D.4答案:C26.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.27.已知點M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點M的坐標是
______.答案:∵點M在z軸上,∴設點M的坐標為(0,0,z)又|MA|=|MB|,由空間兩點間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點M的坐標是(0,0,-3).故為:(0,0,-3).28.栽培甲、乙兩種果樹,先要培育成苗,然后再進行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.
(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;
(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.29.已知直線過點A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點的坐標都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標的點都在l上答案:C30.從甲、乙兩人手工制作的圓形產品中,各自隨機抽取6件,測得其直徑如下(單位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
據以上數據估計兩人的技術穩(wěn)定性,結論是()
A.甲優(yōu)于乙
B.乙優(yōu)于甲
C.兩人沒區(qū)別
D.無法判斷答案:A31.4位學生與2位教師并坐合影留念,針對下列各種坐法,試問:各有多少種不同的坐法?(用數字作答)
(1)教師必須坐在中間;
(2)教師不能坐在兩端,但要坐在一起;
(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學生,有A44種坐法,2位教師坐在一起,將其看成一個整體,可以交換位置,有2種坐法,將這個“整體”插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,則共有2A44A31=144種坐法;(3)先排4位學生,有A44種坐法,教師不能相鄰,將其依次插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,有A32種坐法,則共有A44A32=144種坐法..32.設函數g(x)=ex
x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故為:12.33.
以下四組向量中,互相平行的有()組.
A.一
B.二
C.三
D.四答案:D34.直線l1:x+3=0與直線l2:x+3y-1=0的夾角的大小為______.答案:由于直線l1:x+3=0的斜率不存在,故它的傾斜角為90°,直線l2:x+3y-1=0的斜率為-33,故它的傾斜角為150>,故這兩條直線的夾角為60°,故為60°.35.如圖,AB,AC分別是⊙O的切線和割線,且∠C=45°,∠BDA=60°,CD=6,則切線AB的長是______.答案:過點A作AM⊥BD與點M.∵AB為圓O的切線∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線定理得:AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產交換合同
- 電力公司施工安全合同書二零二五年
- 2024年輔導員考試相關話題及試題及答案
- 二零二五禁止放牧合同書
- 合作合伙協議合同范例
- 個人住房抵押擔保借款合同范例
- 二零二五版企業(yè)人員借調合同
- 拼音音調游戲課件
- 離婚夫妻協議范例大全
- 獨特視角下的2024花藝師考試試題及答案
- 國開電大《人員招聘與培訓實務》形考任務4國家開放大學試題答案
- 鐵路職工政治理論應知應會題庫
- 青少年模擬法庭劇本(敲詐勒索)
- 中考復習確定二次函數的解析式課件
- 音樂歌曲網上搜課件
- 萬用表校準報告
- 地鐵盾構法施工技術試題
- 直線導軌裝配文檔課件
- DBJ04∕T 253-2021 建筑工程施工安全管理標準
- 二元一次方程組(課堂PPT)
- Q∕GDW 12082-2021 輸變電設備物聯網無線傳感器通用技術規(guī)范
評論
0/150
提交評論