2023年杭州萬向職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年杭州萬向職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年杭州萬向職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年杭州萬向職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年杭州萬向職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年杭州萬向職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.一個箱子中裝有質(zhì)量均勻的10個白球和9個黑球,一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個白球中取5個白球有C105種9個黑球中取5個黑球有C95種∴一次摸出5個球,它們的顏色相同的有C105+C95種∴一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:232.2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為______.答案:如圖,根據(jù)橢圓的幾何性質(zhì)可知,頂點B到橢圓的焦點F的距離最大.最大為a+c=a+ae.故為:a+ae.3.已知點A(-3,8),B(2,4),若y軸上的點P滿足PA的斜率是PB斜率的2倍,則P點的坐標(biāo)為______.答案:設(shè)P(0,y),則∵點P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)4.設(shè)是的相反向量,則下列說法一定錯誤的是()

A.∥

B.與的長度相等

C.是的相反向量

D.與一定不相等答案:D5.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:B6.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.7.a、b、c∈R,則下列命題為真命題的是______.

①若a>b,則ac2>bc2

②若ac2>bc2,則a>b

③若a<b<0,則a2>ab>b2

④若a<b<0,則1a<1b.答案:當(dāng)c=0時,ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③8.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個B.3個C.2個D.1個答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C9.經(jīng)過點P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C10.如圖,若直線l1,l2,l3的斜率分別為k1,k2,k3,則k1,k2,k3三個數(shù)從小到大的順序依次是______.答案:由函數(shù)的圖象可知直線l1,l2,l3的斜率滿足k1<0<k3<k2所以k1,k2,k3三個數(shù)從小到大的順序依次是k1,k3,k2故為:k1,k3,k2.11.在平面直角坐標(biāo)系中,雙曲線Γ的中心在原點,它的一個焦點坐標(biāo)為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線的方向向量.任取雙曲線Γ上的點P,若OP=ae1+be2(a、b∈R),則a、b滿足的一個等式是______.答案:因為e1=(2,1)、e2=(2,-1)是漸進線方向向量,所以雙曲線漸近線方程為y=±12x,又c=5,∴a=2,b=1雙曲線方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡得4ab=1.故為4ab=1.12.若函數(shù)f(2x+1)=x2-2x,則f(3)=______.答案:解法一:(換元法求解析式)令t=2x+1,則x=t-12則f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(湊配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(湊配法求解析式)∵f(2x+1)=x2-2x令2x+1=3則x=1此時x2-2x=-1∴f(3)=-1故為:-113.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()

A.

B.

C.

D.答案:D14.(坐標(biāo)系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8215.已知△ABC,D為AB邊上一點,若AD=2DB,CD=13CA+λCB,則λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故為:23.16.如圖是從甲、乙兩個班級各隨機選出9名同學(xué)進行測驗成績的莖葉圖,從圖中看,平均成績較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學(xué)成績:46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學(xué)成績:57,62,65,75,79,81,84,87,89.∴甲平均成績?yōu)?9;乙平均成績?yōu)?5;故為:乙.17.已知命題p:所有有理數(shù)都是實數(shù),命題q:正數(shù)的對數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.18.如圖程序框圖箭頭a指向①處時,輸出

s=______.箭頭a指向②處時,輸出

s=______.答案:程序在運行過程中各變量的情況如下表所示:(1)當(dāng)箭頭a指向①時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

2

3第三圈

3

4第四圈

4

5第五圈

5

6第六圈

否故最終輸出的S值為5,即m=5;(2)當(dāng)箭頭a指向②時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

1+2

3第三圈

1+2+3

4第四圈

1+2+3+4

5第五圈

1+2+3+4+5

6第六圈

否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.19.直線l1過點P(0,-1),且傾斜角為α=30°.

(I)求直線l1的參數(shù)方程;

(II)若直線l1和直線l2:x+y-2=0交于點Q,求|PQ|.答案:(Ⅰ)直線l1的參數(shù)方程為x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t為參數(shù))

(Ⅱ)將上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根據(jù)t的幾何意義得出|PQ|=|t|=3(3-1)20.已知一直線斜率為3,且過A(3,4),B(x,7)兩點,則x的值為()

A.4

B.12

C.-6

D.3答案:A21.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(1)求證:圓心O在直線AD上.

(2)求證:點C是線段GD的中點.答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點C是線段GD的中點.(10分)22.袋子A和袋子B均裝有紅球和白球,從A中摸出一個紅球的概率是13,從B中摸出一個紅球的概率是P.

(1)從A中有放回地摸球,每次摸出一個,共摸5次,求恰好有3次摸到紅球的概率;

(2)若A、B兩個袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率為25,求P的值.答案:(1)每次從A中摸一個紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨立重復(fù)試驗的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個球,A、B兩個袋子中的球數(shù)之比為1:2,則B中有2m個球,∵將A、B中的球裝在一起后,從中摸出一個紅球的概率是25,∴13m+2mp3m=25,解得p=1330.23.以知F是雙曲線x24-y212=1的左焦點,A(1,4),P是雙曲線右支上的動點,則|PF|+|PA|的最小值為______.答案:∵A點在雙曲線的兩只之間,且雙曲線右焦點為F′(4,0),∴由雙曲線性質(zhì)|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當(dāng)且僅當(dāng)A、P、F’三點共線時等號成立.故為924.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為()

A.a(chǎn)<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a(chǎn)<b<1<d<c

答案:B25.已知離心率為63的橢圓C:x2a

2+y2b2=1(a>b>0)經(jīng)過點P(3,1).

(1)求橢圓C的方程;

(2)過左焦點F1且不與x軸垂直的直線l交橢圓C于M、N兩點,若OM?ON=463tan∠MON(O為坐標(biāo)原點),求直線l的方程.答案:(1)依題意,離心率為63的橢圓C:x2a

2+y2b2=1(a>b>0)經(jīng)過點P(3,1).∴3a

2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故橢圓方程為x26+y22=1…(4分)(2)橢圓的左焦點為F1(-2,0),則直線l的方程可設(shè)為y=k(x+2)代入橢圓方程得:(3k2+1)x2+12k2x+12k2-6=0設(shè)M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1?x2=12k2-63k2+1…(6分)由OM?ON=463tan∠MON得:|OM|?|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原點O到l的距離d=|2k|1+k2,則S△OMN=12|MN|d=6(1+k2)3k2+1?|2k|1+k2=236解得k=±33∴l(xiāng)的方程是y=±33(x+2)…(13分)(用其他方法解答參照給分)26.在投擲兩枚硬幣的隨機試驗中,記“一枚正面朝上,一枚反面朝上”為事件A,“兩枚正面朝上”為事件B,則事件A,B()

A.既是互斥事件又是對立事件

B.是對立事件而非互斥事件

C.既非互斥事件也非對立事件

D.是互斥事件而非對立事件答案:D27.已知x∈{1,2,x2},則實數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時集合為{1,2,1}不合題意②x=2此時集合為{1,2,4}合題意③x=x2解得x=0或x=1當(dāng)x=0時集合為{1,2,0}合題意故為0或2.28.直線y=2x+1的參數(shù)方程是()

A.(t為參數(shù))

B.(t為參數(shù))

C.(t為參數(shù))

D.(θ為參數(shù))

答案:B29.將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=()

816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.30.把平面上一切單位向量的始點放在同一點,那么這些向量的終點所構(gòu)成的圖形是()

A.一條線段

B.一段圓弧

C.圓上一群孤立點

D.一個單位圓答案:D31.根據(jù)學(xué)過的知識,試把“推理與證明”這一章的知識結(jié)構(gòu)圖畫出來.答案:根據(jù)“推理與證明”這一章的知識可得結(jié)構(gòu)圖,如圖所示.32.已知a≠0,證明關(guān)于x的方程ax=b有且只有一個根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個根x=ba,另一方面,假設(shè)方程ax=b還有一個根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設(shè)矛盾,故方程ax=b只有一個根.綜上所述,方程ax=b有且只有一個根.33.設(shè)F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.34.已知x與y之間的一組數(shù)據(jù)是()

x0123y2468則y與x的線性回歸方程y=bx+a必過點()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根據(jù)所給的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴這組數(shù)據(jù)的樣本中心點是(1.5,5)∵線性回歸直線一定過樣本中心點,∴y與x的線性回歸方程y=bx+a必過點(1.5,5)故選D.35.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()

A.1

B.2

C.-2

D.-1答案:D36.平面上動點M到定點F(3,0)的距離比M到直線l:x+1=0的距離大2,則動點M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D37.(a+b)6的展開式的二項式系數(shù)之和為______.答案:根據(jù)二項式系數(shù)的性質(zhì):二項式系數(shù)和為2n所以(a+b)6展開式的二項式系數(shù)之和等于26=64故為:64.38.圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ.

(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)求經(jīng)過圓O1,圓O2交點的直線的直角坐標(biāo)方程.答案:以有點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0為圓O1的直角坐標(biāo)方程.….(3分)同理x2+y2+4y=0為圓O2的直角坐標(biāo)方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圓O1,圓O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.…(10分)39.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22

和(5-22,5-22

),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:840.與原數(shù)據(jù)單位不一樣的是()

A.眾數(shù)

B.平均數(shù)

C.標(biāo)準(zhǔn)差

D.方差答案:D41.在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.42.如圖所示的方格紙中有定點O,P,Q,E,F(xiàn),G,H,則=()

A.

B.

C.

D.

答案:C43.如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,∠ACB的平分線分別交AE、AB于點F、D.

(Ⅰ)求∠ADF的度數(shù);

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3344.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實數(shù)k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為245.某同學(xué)參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得0分,假設(shè)這位同學(xué)答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響,則這名同學(xué)得300分的概率為

;這名同學(xué)至少得300分的概率為

.答案:0.228;0.564解析:得300分可能是答對第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。46.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.47.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.48.設(shè)某批產(chǎn)品合格率為,不合格率為,現(xiàn)對該產(chǎn)品進行測試,設(shè)第ε次首次取到正品,則P(ε=3)等于()

A.

B.

C.

D.答案:C49.先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.

(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.答案:(1)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.∴直線ax+by+c=0與圓x2+y2=1相切的概率是236=118(2)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵三角形的一邊長為5∴當(dāng)a=1時,b=5,(1,5,5)1種當(dāng)a=2時,b=5,(2,5,5)1種當(dāng)a=3時,b=3,5,(3,3,5),(3,5,5)2種當(dāng)a=4時,b=4,5,(4,4,5),(4,5,5)2種當(dāng)a=5時,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6種當(dāng)a=6時,b=5,6,(6,5,5),(6,6,5)2種故滿足條件的不同情況共有14種故三條線段能圍成不同的等腰三角形的概率為1436=718.50.拋物線y=-12x2上一點N到其焦點F的距離是3,則點N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點為F(0,-12),準(zhǔn)線方程為y=12∵點N在拋物線上,到焦點F的距離是3,∴點N到準(zhǔn)線y=12的距離也是3因此,點N到直線y=1的距離等于3+(1-12)=72故為:72第2卷一.綜合題(共50題)1.若角α和β的兩邊分別對應(yīng)平行且方向相反,則當(dāng)α=45°時,β=______.答案:由題意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故為45°.2.已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:20063.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標(biāo)是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A4.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點C作⊙O的切線CD,D為切點,若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.5.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,設(shè)過點P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y

12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.6.已知點P是以F1、F2為左、右焦點的雙曲線(a>0,b>0)左支上一點,且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()

A.

B.

C.

D.答案:D7.若隨機向一個半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π8.設(shè)點P對應(yīng)的復(fù)數(shù)為-3+3i,以原點為極點,實軸正半軸為極軸建立極坐標(biāo)系,則點P的極坐標(biāo)為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A9.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過

B作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D10.圓ρ=5cosθ-5sinθ的圓心的極坐標(biāo)是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A11.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.據(jù)有關(guān)報道,2009年8月15日至8

月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.12.以下四組向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B13.以拋物線y2=2px(p>0)的焦半徑|PF|為直徑的圓與y軸位置關(guān)系是______.答案:根據(jù)拋物線定義可知|PF|=p2,而圓的半徑為p2,圓心為(p2,0),|PF|正好等于所求圓的半徑,進而可推斷圓與y軸位置關(guān)系是相切.14.已知關(guān)于的不等式的解集為,且,求的值答案:,,解析:用數(shù)形結(jié)合法,如圖顯然解集是,即,從而此時=與交點橫坐標(biāo)為5,從而縱坐標(biāo)為4,將交點坐標(biāo)代入可得所以,,15.教學(xué)大樓共有五層,每層均有兩個樓梯,由一層到五層的走法有()

A.10種

B.25種

C.52種

D.24種答案:D16.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當(dāng)x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當(dāng)x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.17.在空間直角坐標(biāo)系中,已知點P(a,0,0),Q(4,1,2),且|PQ|=,則a=()

A.1

B.-1

C.-1或9

D.1或9答案:C18.已知橢圓C:+y2=1的右焦點為F,右準(zhǔn)線l,點A∈l,線段AF交C于點B.若=3,則=(

A.

B.2

C.

D.3答案:A19.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應(yīng).∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.20.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對稱,則m最小正值是

A.

B.

C.

D.答案:A21.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()

A.小前提錯

B.結(jié)論錯

C.正確的

D.大前提錯答案:C22.擬定從甲地到乙地通話m分鐘的電話費由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費為10.6元,則通話時間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].23.用系統(tǒng)抽樣法要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生隨機地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126,則第1組中用抽簽的方法確定的號碼是______.答案:不妨設(shè)在第1組中隨機抽到的號碼為x,則在第16組中應(yīng)抽出的號碼為120+x.設(shè)第1組抽出的號碼為x,則第16組應(yīng)抽出的號碼是8×15+x=126,∴x=6.故為:6.24.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()

A.9

B.18

C.27

D.36答案:B25.用數(shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個數(shù)為()

A.8

B.24

C.48

D.120答案:C26.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C27.一個多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A28.先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標(biāo)有點數(shù)1、2、3、4、5、6),骰子朝上的面的點數(shù)分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對而骰子朝上的點數(shù)X、Y共有36對∴概率為336=112故選C.29.平面上一動點到兩定點距離差為常數(shù)2a(a>0)的軌跡是否是雙曲線,若a>c是否為雙曲線?答案:由題意,設(shè)兩定點間的距離為2c,則2a<2c時,軌跡為雙曲線的一支2a=2c時,軌跡為一條射線2a>2c時,無軌跡.30.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個數(shù)的大小關(guān)系是:______(用符號“>”連接這三個字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.31.已知數(shù)列{an}的前n項和Sn=an2+bn=c

(a、b、c∈R),則“c=0”是“{an}是等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數(shù)列{an}的前n項和Sn=an2+bn+c根據(jù)等差數(shù)列的前n項和的公式,可以看出當(dāng)c=0時,Sn=an2+bn表示等差數(shù)列的前n項和,則數(shù)列是一個等差數(shù)列,當(dāng)數(shù)列是一個等差數(shù)列時,表示前n項和時,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.32.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.33.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()

A.直線

B.橢圓

C.拋物線

D.雙曲線答案:D34.曲線的參數(shù)方程為(t是參數(shù)),則曲線是(

A.線段

B.雙曲線的一支

C.圓

D.射線答案:D35.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)A=45°時,sinA=22成立.若當(dāng)A=135°時,滿足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要條件.故選A.36.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B37.設(shè)ABC是坐標(biāo)平面上的一個三角形,P為平面上一點且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C38.已知向量=(1,1,-2),=(2,1,),若≥0,則實數(shù)x的取值范圍為()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C39.若三角形的內(nèi)切圓半徑為r,三邊的長分別為a,b,c,則三角形的面積S=12r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是R,所以四面體的體積等于以O(shè)為頂點,分別以四個面為底面的4個三棱錐體積的和.故為:13R(S1+S2+S3+S4).40.某學(xué)校為了調(diào)查高三年級的200名文科學(xué)生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會的同學(xué)隨機抽取20名同學(xué)進行調(diào)查;第二種由教務(wù)處對該年級的文科學(xué)生進行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:第一種由學(xué)生會的同學(xué)隨機抽取20名同學(xué)進行調(diào)查;這是一種簡單隨機抽樣,第二種由教務(wù)處對該年級的文科學(xué)生進行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進行調(diào)查,對于個體比較多的總體,采用系統(tǒng)抽樣,故選D.41.已知向量,,,則(

)A.B.C.5D.25答案:C解析:將平方即可求得C.42.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點.

(1)若A,B的中點為P(2,1),求|AB|;

(2)若P(2,1)是弦AB的一個三等分點,求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個三等分點,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t

22=-84a2+1,∴t

22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).43.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C44.5本不同的書全部分給3個學(xué)生,每人至少一本,共有()種分法.

A.60

B.150

C.300

D.210答案:B45.如圖,四邊形ABCD內(nèi)接于⊙O,AD:BC=1:2,AB=35,PD=40,則過點P的⊙O的切線長是()A.60B.402C.352D.50答案:作切線PE,由切割線定理知,PE2=PD?PC=PA?PB,所以PAPC=PAPB,又△PAD與△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA?PB=(PB-AB)?PB=(80-35)×80=602,PE=60.故選A.46.某學(xué)校三個社團的人員分布如下表(每名同學(xué)只參加一個社團):

聲樂社排球社武術(shù)社高一4530a高二151020學(xué)校要對這三個社團的活動效果里等抽樣調(diào)查,按分層抽樣的方法從社團成員中抽取30人,結(jié)果聲樂社被抽出12人,則a=______.答案:根據(jù)分層抽樣的定義和方法可得,1245+15=30120+a,解得a=30,故為3047.若非零向量滿足,則()

A.

B.

C.

D.答案:C48.如圖,△ABC中,CD=2DB,設(shè)AD=mAB+nAC(m,n為實數(shù)),則m+n=______.答案:∵CD=2DB,∴B、C、D三點共線,由三點共線的向量表示,我們易得AD=23AB+13AC,由平面向量基本定理,我們易得m=23,n=13,∴m+n=1故為:149.已知△ABC的頂點坐標(biāo)分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()

A.2

B.6+

C.3+2

D.6+3答案:D50.下列給變量賦值的語句正確的是()

A.5=a

B.a(chǎn)+2=a

C.a(chǎn)=b=4

D.a(chǎn)=2*a答案:D第3卷一.綜合題(共50題)1.某超市推出如下優(yōu)惠方案:

(1)一次性購物不超過100元不享受優(yōu)惠;

(2)一次性購物超過100元但不超過300元的一律九折;

(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.

如果他一次性購買與上兩次相同的商品,則應(yīng)付款______.答案:該人一次性購物付款80元,據(jù)條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應(yīng)付款316元或288元.故為316元或288元.2.現(xiàn)有編號分別為1,2,3,4,5,6,7,8,9的九道不同的數(shù)學(xué)題,某同學(xué)從這九道題中一次隨機抽取兩道題,每題被抽到的概率是相等的,用符號(x,y)表示事件“抽到兩題的編號分別為x,y,且x<y”.

(1)共有多少個基本事件?并列舉出來.

(2)求該同學(xué)所抽取的兩道題的編號之和小于17但不小于11的概率.答案:(1)共有36種基本事件,列舉如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)設(shè)事件A=“兩道題的編號之和小于17但不小于11”則事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15種.∴P(A)=1536=512.3.某市某年一個月中30天對空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如下:

61

76

70

56

81

91

55

91

75

81

88

67

101

103

57

91

77

86

81

83

82

82

64

79

86

85

75

71

49

45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.

分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.

…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)4.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).5.用數(shù)學(xué)歸納法證明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:證明:(1)當(dāng)n=2時,左邊=12+13+14=1312>1,∴n=2時成立(2分)(2)假設(shè)當(dāng)n=k(k≥2)時成立,即1k+1k+1+1k+2+…+1k2>1那么當(dāng)n=k+1時,左邊=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)?1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n>1都成立(8分)6.拋物線y=-12x2上一點N到其焦點F的距離是3,則點N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點為F(0,-12),準(zhǔn)線方程為y=12∵點N在拋物線上,到焦點F的距離是3,∴點N到準(zhǔn)線y=12的距離也是3因此,點N到直線y=1的距離等于3+(1-12)=72故為:727.如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各時間段內(nèi)的頻率如下表:所用時間(分鐘)10~2020~3030~4040~5050~60L1的頻率0.10.20.30.20.2L2的頻率00.10.40.40.1現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站.

(Ⅰ)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?

(Ⅱ)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到火車站的人數(shù),針對(Ⅰ)的選擇方案,求X的分布列和數(shù)學(xué)期望.答案:(Ⅰ)Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到火車站”,Bi表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到火車站”,i=1,2.用頻率估計相應(yīng)的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲應(yīng)選擇LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙應(yīng)選擇L2.(Ⅱ)A,B分別表示針對(Ⅰ)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到火車站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.8.設(shè)集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.

B.

C.

D.

答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對應(yīng)的關(guān)系選A.故選A.9.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試求實數(shù)m的取值范圍,使得:

(1)z是純虛數(shù);

(2)z是實數(shù);

(3)z對應(yīng)的點位于復(fù)平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數(shù),則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實數(shù),則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對應(yīng)的點坐標(biāo)為(lg(m2-2m-2),m2+3m+2)∴若該對應(yīng)點位于復(fù)平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)10.已知△ABC是邊長為4的正三角形,D、P是△ABC內(nèi)部兩點,且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為______.答案:取BC的中點E,連接AE,根據(jù)△ABC是邊長為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點D為AE的中點,AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:3411.用反證法證明命題“如果a>b,那么a3>b3“時,下列假設(shè)正確的是()

A.a(chǎn)3<b3

B.a(chǎn)3<b3或a3=b3

C.a(chǎn)3<b3且a3=b3

D.a(chǎn)3>b3答案:B12.在極坐標(biāo)系中,過點p(3,)且垂直于極軸的直線方程為()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A13.某同學(xué)參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得0分,假設(shè)這位同學(xué)答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響,則這名同學(xué)得300分的概率為

;這名同學(xué)至少得300分的概率為

.答案:0.228;0.564解析:得300分可能是答對第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。14.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長記為ai(i=1,2,3,4),此四邊形內(nèi)任一點P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4

i=1(ihi)=2Sk.類比以上性質(zhì),體積為V的三棱錐的第i個面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點Q到第i個面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4

i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根據(jù)三棱錐的體積公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故選B.15.已知兩曲線參數(shù)方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點坐標(biāo)為______.答案:曲線參數(shù)方程x=5cosθy=sinθ(0≤θ<π)的直角坐標(biāo)方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點坐標(biāo)為(1,255).故為:(1,255).16.方程.12

41x

x21-3

9.=0的解集為______.答案:.12

41x

x21-3

9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.17.已知橢圓(a>b>0)的焦點分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△ABF2的周長為()

A.10

B.12

C.16

D.20答案:D18.下面程序運行后,輸出的值是()

A.42

B.43

C.44

D.45

答案:C19.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,以底面正方形ABCD的中心為坐標(biāo)原點O,分別以射線OB,OC,AA1的指向為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系.試寫出正方體八個頂點的坐標(biāo).答案:解設(shè)i,j,k分別是與x軸、y軸、z軸的正方向方向相同的單位坐標(biāo)向量.因為底面正方形的中心為O,邊長為2,所以O(shè)B=2.由于點B在x軸的正半軸上,所以O(shè)B=2i,即點B的坐標(biāo)為(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以O(shè)B1=(2,0,2).即點B1的坐標(biāo)為(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).20.已知

p:所有國產(chǎn)手機都有陷阱消費,則¬p是()

A.所有國產(chǎn)手機都沒有陷阱消費

B.有一部國產(chǎn)手機有陷阱消費

C.有一部國產(chǎn)手機沒有陷阱消費

D.國外產(chǎn)手機沒有陷阱消費答案:C21.若e1、e2、e3是三個不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請說明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.22.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發(fā)生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.23.當(dāng)a>0時,設(shè)命題P:函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式x2+ax+1>0對任意x∈R都成立.若“P且Q”是真命題,則實數(shù)a的取值范圍是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;∴f′(x)≥0在區(qū)間(1,2)上恒成立,∴1-ax2≥0在區(qū)間(1,2)上恒成立,即a≤x2在區(qū)間(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0對任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命題,則P且Q都是真命題,故由①②的交集得:0<a≤1,則實數(shù)a的取值范圍是0<a≤1.故選A.24.方程(x2-9)2(x2-y2)2=0表示的圖形是()

A.4個點

B.2個點

C.1個點

D.四條直線答案:D25.點P(2,5)關(guān)于直線x+y=1的對稱點的坐標(biāo)是(

)。答案:(-4,-1)26.從⊙O外一點P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點.求證:ACBC=ADBD.

答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.27.已知拋物線y2=4x上兩定點A、B分別在對稱軸兩側(cè),F(xiàn)為焦點,且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點A在第一象限,B點在第四象限.如圖.拋物線的焦點F(1,0),點A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以當(dāng)y0=-1時,d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274

…(11分)此時P點坐標(biāo)為(14,-1).…(12分).28.有一農(nóng)場種植一種水稻在同一塊稻田中連續(xù)8年的年平均產(chǎn)量如下:(單位:kg)

450

430

460

440

450

440

470

460;

則其方差為()

A.120

B.80

C.15

D.150答案:D29.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.30.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數(shù)列的第10項,則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B31.(選做題)那霉素發(fā)酵液生物測定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時間在16小時以上,某制藥廠為了縮短時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍固定在29~50°C,精確度要求±1°C,用分?jǐn)?shù)法安排實驗,令第一試點在t1處,第二試點在t2處,則t1+t2=(

).答案:7932.直線被圓x2+y2=9截得的弦長為(

A.

B.

C.

D.答案:B33.命題“若ab=0,則a、b中至少有一個為零”的逆否命題是

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:若a≠0,且b≠0,則ab≠0.34.在區(qū)間[0,1]產(chǎn)生的隨機數(shù)x1,轉(zhuǎn)化為[-1,3]上的均勻隨機數(shù)x,實施的變換為()

A.x=3x1-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論