版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.關于的不等式的解集如圖所示,則的取值是A.0 B. C. D.2.某校120名學生某一周用于閱讀課外書籍的時間的頻率分布直方圖如圖所示.其中閱讀時間是8~10小時的頻數(shù)和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.253.《九章算術》是我國古代第一部自成體系的數(shù)學專著,代表了東方數(shù)學的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”如圖所示,請根據(jù)所學知識計算:圓形木材的直徑AC是()A.13寸 B.20寸 C.26寸 D.28寸4.2017年牡丹區(qū)政府工作報告指出:2012年以來牡丹區(qū)經(jīng)濟社會發(fā)展取得顯著成就,綜合實力明顯提升,地區(qū)生產(chǎn)總值由156.3億元增加到338億元,年均可比增長11.4%,338億用科學記數(shù)法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10105.下列幾何體是由4個相同的小正方體搭成的,其中左視圖與俯視圖相同的是()A. B. C. D.6.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯誤的有().A.3個 B.2個 C.1個 D.0個7.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元8.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°9.sin45°的值等于()A. B.1 C. D.10.在中,,,,則的值是()A. B. C. D.11.如圖,AB∥CD,E為CD上一點,射線EF經(jīng)過點A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°12.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F(xiàn)分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一次函數(shù)y=kx+b的圖象如圖所示,當y>0時,x的取值范圍是_____.14.計算:6﹣=_____15.如圖,矩形ABCD中,E為BC的中點,將△ABE沿直線AE折疊時點B落在點F處,連接FC,若∠DAF=18°,則∠DCF=_____度.16.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點C旋轉,使得點A落在點A′,點B落在點B′.若點A′在邊AB上,則點B、B′的距離為_____.17.如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m.18.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為_____cm1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知函數(shù)(x>0)的圖象經(jīng)過點A、B,點B的坐標為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,與x軸的負半軸交于點E.若AC=OD,求a、b的值;若BC∥AE,求BC的長.20.(6分)如圖,已知A是⊙O上一點,半徑OC的延長線與過點A的直線交于點B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.21.(6分)如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)的圖象相交于點A(4,n),與軸相交于點B.填空:n的值為,k的值為;以AB為邊作菱形ABCD,使點C在軸正半軸上,點D在第一象限,求點D的坐標;考察反比函數(shù)的圖象,當時,請直接寫出自變量的取值范圍.22.(8分)如圖,已知點E,F(xiàn)分別是?ABCD的對角線BD所在直線上的兩點,BF=DE,連接AE,CF,求證:CF=AE,CF∥AE.23.(8分)如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結果保留根號).24.(10分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結.(1)求證:四邊形為菱形;(2)連結,若平分,,求的長.25.(10分)如圖,男生樓在女生樓的左側,兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.求樓間距AB;若男生樓共30層,層高均為3m,請通過計算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,,,26.(12分)如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最小?若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.27.(12分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
首先根據(jù)不等式的性質,解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.2、D【解析】分析:根據(jù)頻率分布直方圖中的數(shù)據(jù)信息和被調查學生總數(shù)為120進行計算即可作出判斷.詳解:由頻率分布直方圖可知:一周內用于閱讀的時間在8-10小時這組的:頻率:組距=0.125,而組距為2,∴一周內用于閱讀的時間在8-10小時這組的頻率=0.125×2=0.25,又∵被調查學生總數(shù)為120人,∴一周內用于閱讀的時間在8-10小時這組的頻數(shù)=120×0.25=30.綜上所述,選項D中數(shù)據(jù)正確.故選D.點睛:本題解題的關鍵有兩點:(1)要看清,縱軸上的數(shù)據(jù)是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數(shù)、頻率和總數(shù)之間的關系.3、C【解析】分析:設⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解方程即可.詳解:設⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解得r=13,∴⊙O的直徑為26寸,故選C.點睛:本題考查垂徑定理、勾股定理等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題4、D【解析】
根據(jù)科學記數(shù)法的定義可得到答案.【詳解】338億=33800000000=,故選D.【點睛】把一個大于10或者小于1的數(shù)表示為的形式,其中1≤|a|<10,這種記數(shù)法叫做科學記數(shù)法.5、C【解析】試題分析:從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.選項C左視圖與俯視圖都是,故選C.6、A【解析】3+3=6,錯誤,無法計算;②=1,錯誤;③+==2不能計算;④=2,正確.故選A.7、C【解析】
根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質,掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.8、C【解析】
根據(jù)扇形的面積公式列方程即可得到結論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.9、D【解析】
根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點睛】本題考查了特殊角的三角函數(shù)的應用,能熟記特殊角的三角函數(shù)值是解此題的關鍵,難度適中.10、D【解析】
首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,
∴,∴,故選:D.【點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉化成直角三角形的邊長的比.11、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點睛:本題考查的是平行線的性質,熟知兩直線平行,同位角相等是解答此題的關鍵.12、C【解析】
因為R不動,所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:根據(jù)圖象和數(shù)據(jù)可知,當y>0即圖象在x軸的上方,x>1.
故答案為x>1.14、3【解析】
按照二次根式的運算法則進行運算即可.【詳解】【點睛】本題考查的知識點是二次根式的運算,解題關鍵是注意化簡算式.15、1.【解析】
由折疊的性質得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性質得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性質求出∠ECF=54°,即可得出∠DCF的度數(shù).【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折疊的性質得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E為BC的中點,∴BE=CE,∴FE=CE,∴∠ECF=×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案為1.【點睛】本題考查了矩形的性質、折疊變換的性質、直角三角形的性質、等腰三角形的性質、三角形內角和定理等知識點,求出∠ECF的度數(shù)是解題的關鍵.16、4【解析】
過點C作CH⊥AB于H,利用解直角三角形的知識,分別求出AH、AC、BC的值,進而利用三線合一的性質得出AA'的值,然后利用旋轉的性質可判定△ACA'∽△BCB',繼而利用相似三角形的對應邊成比例的性質可得出BB'的值.【詳解】解:過點C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA=,
∴AC=AB?cosA=6,BC=3,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC?cosA=4,
由旋轉的性質得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中點,
∴AA'=2AH=8,
又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【點睛】此題考查了解直角三角形、旋轉的性質、勾股定理、等腰三角形的性質、相似三角形的判定與性質,解答本題的關鍵是得出△ACA'∽△BCB'.17、1.【解析】
根據(jù)已知建立平面直角坐標系,進而求出二次函數(shù)解析式,再通過把y=-1.5代入拋物線解析式得出水面寬度,即可得出答案【詳解】解:建立平面直角坐標系,設橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,
拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半1米,拋物線頂點C坐標為(0,1),
設頂點式y(tǒng)=ax1+1,把A點坐標(-1,0)代入得a=-0.5,
∴拋物線解析式為y=-0.5x1+1,
當水面下降1.5米,通過拋物線在圖上的觀察可轉化為:
當y=-1.5時,對應的拋物線上兩點之間的距離,也就是直線y=-1與拋物線相交的兩點之間的距離,
可以通過把y=-1.5代入拋物線解析式得出:
-1.5=-0.5x1+1,
解得:x=±3,
1×3-4=1,
所以水面下降1.5m,水面寬度增加1米.
故答案為1.【點睛】本題考查了二次函數(shù)的應用,根據(jù)已知建立坐標系從而得出二次函數(shù)解析式是解決問題的關鍵,學會把實際問題轉化為二次函數(shù),利用二次函數(shù)的性質解決問題,屬于中考??碱}型.18、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點:扇形面積的計算.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)a=,b=2;(2)BC=.【解析】試題分析:(1)首先利用反比例函數(shù)圖象上點的坐標性質得出k的值,再得出A、D點坐標,進而求出a,b的值;(2)設A點的坐標為:(m,),則C點的坐標為:(m,0),得出tan∠ADF=,tan∠AEC=,進而求出m的值,即可得出答案.試題解析:(1)∵點B(2,2)在函數(shù)y=(x>0)的圖象上,∴k=4,則y=,∵BD⊥y軸,∴D點的坐標為:(0,2),OD=2,∵AC⊥x軸,AC=OD,∴AC=3,即A點的縱坐標為:3,∵點A在y=的圖象上,∴A點的坐標為:(,3),∵一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,∴,解得:,b=2;(2)設A點的坐標為:(m,),則C點的坐標為:(m,0),∵BD∥CE,且BC∥DE,∴四邊形BCED為平行四邊形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF=,在Rt△ACE中,tan∠AEC=,∴=,解得:m=1,∴C點的坐標為:(1,0),則BC=.考點:反比例函數(shù)與一次函數(shù)的交點問題.20、(1)見解析;(2)+【解析】
(1)利用題中的邊的關系可求出△OAC是正三角形,然后利用角邊關系又可求出∠CAB=30°,從而求出∠OAB=90°,所以判斷出直線AB與⊙O相切;(2)作AE⊥CD于點E,由已知條件得出AC=2,再求出AE=CE,根據(jù)直角三角形的性質就可以得到AD.【詳解】(1)直線AB是⊙O的切線,理由如下:連接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等邊三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切線.(2)作AE⊥CD于點E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【點睛】本題考查了切線的判定、直角三角形斜邊上的中線、等腰三角形的性質以及圓周角定理、等邊三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.21、(1)3,1;(2)(4+,3);(3)或【解析】
(1)把點A(4,n)代入一次函數(shù)y=x-3,得到n的值為3;再把點A(4,3)代入反比例函數(shù),得到k的值為1;(2)根據(jù)坐標軸上點的坐標特征可得點B的坐標為(2,3),過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,根據(jù)勾股定理得到AB=,根據(jù)AAS可得△ABE≌△DCF,根據(jù)菱形的性質和全等三角形的性質可得點D的坐標;(3)根據(jù)反比函數(shù)的性質即可得到當y≥-2時,自變量x的取值范圍.【詳解】解:(1)把點A(4,n)代入一次函數(shù)y=x-3,可得n=×4-3=3;把點A(4,3)代入反比例函數(shù),可得3=,解得k=1.(2)∵一次函數(shù)y=x-3與x軸相交于點B,∴x-3=3,解得x=2,∴點B的坐標為(2,3),如圖,過點A作AE⊥x軸,垂足為E,過點D作DF⊥x軸,垂足為F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,AB=,∵四邊形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x軸,DF⊥x軸,∴∠AEB=∠DFC=93°,在△ABE與△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴點D的坐標為(4+,3).(3)當y=-2時,-2=,解得x=-2.故當y≥-2時,自變量x的取值范圍是x≤-2或x>3.22、證明見解析【解析】
根據(jù)平行四邊形性質推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根據(jù)SAS證兩三角形全等即可解決問題.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴BE=DF,∵在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴AE=CF,∠E=∠F,∴AE∥CF.【點睛】本題考查了平行四邊形的性質和全等三角形的判定的應用,解題的關鍵是準確尋找全等三角形解決問題.23、【解析】
過點C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根據(jù)AD+BD=AB列方程求解可得.【詳解】解:過點C作CD⊥AB于點D,設CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飛機飛行的高度為(5﹣5)km.24、(1)證明見解析;(2)AC=;【解析】
(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;
(2)只要證明△ACD是直角三角形,∠ADC=60°,AD=2即可解決問題;【詳解】(1)證明:∵AD=2BC,E為AD的中點,∴DE=BC,∵AD∥BC,∴四邊形BCDE是平行四邊形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四邊形BCDE是菱形.(2)連接AC,如圖所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,AC=.【點睛】考查菱形的判定和性質、直角三角形斜邊中線的性質、銳角三角函數(shù)等知識,解題的關鍵是熟練掌握菱形的判定方法.25、(1)的長為50m;(2)冬至日20層包括20層以下會受到擋光的影響,春分日6層包括6層以下會受到擋光的影響.【解析】
如圖,作于M,于則,設想辦法構建方程即可解決問題.求出AC,AD,分兩種情形解決問題即可.【詳解】解:如圖,作于M,于則,設.在中,,在中,,,,,的長為50m.由可知:,,,,,冬至日20層包括20層以下會受到擋光的影響,春分日6層包括6層以下會受到擋光的影響.【點睛】考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.26、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小設過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當x=-1時,y=1;當y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當x=0時,y=2,即M的坐標為(0,2);由圖可知,△AOM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版:供應鏈管理服務合同
- 2024年特種門采購合同范本3篇
- 2024年某企業(yè)關于知識產(chǎn)權許可的合同
- 馬鞍山職業(yè)技術學院《安裝工程計量計價實訓》2023-2024學年第一學期期末試卷
- 2024年文化產(chǎn)業(yè)融資借款合同范本大全6篇
- 2025年貨運從業(yè)資格證模擬試題題庫及答案解析
- 2025年貨運從業(yè)資格證考試題目和答案
- 2025年昆明考貨運從業(yè)資格證考試題目
- 2024事業(yè)單位聘用合同教師(附教育質量監(jiān)控與管理)3篇
- 2025建筑工程民工勞動合同范文
- 2024年債權投資協(xié)議6篇
- 【MOOC】工程力學-浙江大學 中國大學慕課MOOC答案
- 2024-2025學年北師大版八年級數(shù)學上冊期末綜合測試卷(含答案)
- 【MOOC】Java程序設計-北京林業(yè)大學 中國大學慕課MOOC答案
- 菏澤學院中外教育史(高起專)復習題
- 辦公樓室內裝修工程施工組織設計(方案)
- 圍手術期疼痛
- 活在課堂里 課件
- 分數(shù)的初步認識(單元測試)-2024-2025學年三年級上冊數(shù)學期末復習 人教版
- 機械CAD、CAM-形考任務一-國開-參考資料
- 電氣專業(yè)述職報告
評論
0/150
提交評論