![2023屆湖北省黃石十四中學(xué)中考猜題數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view/7492783886822a837c92fd04865745dc/7492783886822a837c92fd04865745dc1.gif)
![2023屆湖北省黃石十四中學(xué)中考猜題數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view/7492783886822a837c92fd04865745dc/7492783886822a837c92fd04865745dc2.gif)
![2023屆湖北省黃石十四中學(xué)中考猜題數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view/7492783886822a837c92fd04865745dc/7492783886822a837c92fd04865745dc3.gif)
![2023屆湖北省黃石十四中學(xué)中考猜題數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view/7492783886822a837c92fd04865745dc/7492783886822a837c92fd04865745dc4.gif)
![2023屆湖北省黃石十四中學(xué)中考猜題數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view/7492783886822a837c92fd04865745dc/7492783886822a837c92fd04865745dc5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.據(jù)報道,南寧創(chuàng)客城已于2015年10月開城,占地面積約為14400平方米,目前已引進創(chuàng)業(yè)團隊30多家,將14400用科學(xué)記數(shù)法表示為()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣42.如圖,I是?ABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合3.已知直線與直線的交點在第一象限,則的取值范圍是()A. B. C. D.4.下列實數(shù)為無理數(shù)的是()A.-5 B. C.0 D.π5.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.6.設(shè)x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.127.化簡-32A.﹣23B.﹣23C.﹣68.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.9.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.10.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD為米,點A、D、B在同一水平直線上,則A、B兩點間的距離是_____米.(結(jié)果保留根號)12.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應(yīng)點為,當(dāng)?shù)拈L度最小時,的長為__________.13.如圖所示,D、E分別是△ABC的邊AB、BC上的點,DE∥AC,若S△BDE:S△CDE=1:3,則S△BDE:S四邊形DECA的值為_____.14.觀光塔是濰坊市區(qū)的標(biāo)志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是______m.15.如圖,O是坐標(biāo)原點,菱形OABC的頂點A的坐標(biāo)為(﹣3,4),頂點C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過頂點B,則k的值為_____.16.若一元二次方程x2﹣2x﹣m=0無實數(shù)根,則一次函數(shù)y=(m+1)x+m﹣1的圖象不經(jīng)過第_____象限.17.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=26,CD=24,那么sin∠OCE=▲.三、解答題(共7小題,滿分69分)18.(10分)已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點M,N,F分別為AB,ED,AD的中點,∠B=∠EDC=45°,(1)求證MF=NF(2)當(dāng)∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時,請猜想線段MF,NF之間的數(shù)量關(guān)系.(不必證明)19.(5分)“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)求扇形統(tǒng)計圖中C所對圓心角的度數(shù);(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.20.(8分)如圖,平面直角坐標(biāo)系中,直線與x軸,y軸分別交于A,B兩點,與反比例函數(shù)的圖象交于點.求反比例函數(shù)的表達式;若點C在反比例函數(shù)的圖象上,點D在x軸上,當(dāng)四邊形ABCD是平行四邊形時,求點D的坐標(biāo).21.(10分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.22.(10分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?23.(12分)在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學(xué)生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.等級得分x(分)頻數(shù)(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據(jù)圖表中的信息完成下列問題:(1)本次抽樣調(diào)查的樣本容量是.其中m=,n=.(2)扇形統(tǒng)計圖中,求E等級對應(yīng)扇形的圓心角α的度數(shù);(3)我校九年級共有700名學(xué)生,估計體育測試成績在A、B兩個等級的人數(shù)共有多少人?(4)我校決定從本次抽取的A等級學(xué)生(記為甲、乙、丙、?。┲?,隨機選擇2名成為學(xué)校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.24.(14分)(1)計算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡,再求值:(x﹣)÷,其中x=,y=﹣1.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).【詳解】14400=1.44×1.故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.2、D【解析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對的圓周角相等.3、C【解析】
根據(jù)題意畫出圖形,利用數(shù)形結(jié)合,即可得出答案.【詳解】根據(jù)題意,畫出圖形,如圖:當(dāng)時,兩條直線無交點;當(dāng)時,兩條直線的交點在第一象限.故選:C.【點睛】本題主要考查兩個一次函數(shù)的交點問題,能夠數(shù)形結(jié)合是解題的關(guān)鍵.4、D【解析】
無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、﹣5是整數(shù),是有理數(shù),選項錯誤;B、是分?jǐn)?shù),是有理數(shù),選項錯誤;C、0是整數(shù),是有理數(shù),選項錯誤;D、π是無理數(shù),選項正確.故選D.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).5、C【解析】
如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.6、C【解析】試題分析:根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.7、C【解析】試題解析:原式=-32故選C.考點:二次根式的乘除法.8、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.9、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.10、C【解析】
混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設(shè)瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應(yīng)的等量關(guān)系是解決本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、100(1+)【解析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計算AD+BD即可.詳解:如圖,∵無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點間的距離為100(1+)米.故答案為100(1+).點睛:本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題:解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.12、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據(jù)“等腰三角形三線合一”可得,因為,所以.在中,根據(jù)勾股定理可得,.因為梯形沿直線折疊,點的對應(yīng)點為,根據(jù)翻折的性質(zhì)可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當(dāng)C、A′、P在同一條直線時CA′取最值,由此結(jié)合直角三角形勾股定理、等邊三角形性質(zhì)求得此時CQ的長度即可.13、1:1【解析】
根據(jù)題意得到BE:EC=1:3,證明△BED∽△BCA,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=()2=1:16,∴S△BDE:S四邊形DECA=1:1,故答案為1:1.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.14、135【解析】試題分析:根據(jù)題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應(yīng)用.15、﹣1【解析】
根據(jù)點C的坐標(biāo)以及菱形的性質(zhì)求出點B的坐標(biāo),然后利用待定系數(shù)法求出k的值即可.【詳解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,則點B的橫坐標(biāo)為﹣3﹣5=﹣8,故B的坐標(biāo)為:(﹣8,4),將點B的坐標(biāo)代入y=得,4=,解得:k=﹣1.故答案為:﹣1.16、一【解析】∵一元二次方程x2-2x-m=0無實數(shù)根,
∴△=4+4m<0,解得m<-1,
∴m+1<0,m-1<0,
∴一次函數(shù)y=(m+1)x+m-1的圖象經(jīng)過二三四象限,不經(jīng)過第一象限.
故答案是:一.17、【解析】垂徑定理,勾股定理,銳角三角函數(shù)的定義?!痉治觥咳鐖D,設(shè)AB與CD相交于點E,則根據(jù)直徑AB=26,得出半徑OC=13;由CD=24,CD⊥AB,根據(jù)垂徑定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根據(jù)正弦函數(shù)的定義,求出sin∠OCE的度數(shù):。三、解答題(共7小題,滿分69分)18、(1)見解析;(2)MF=NF.【解析】
(1)連接AE,BD,先證明△ACE和△BCD全等,然后得到AE=BD,然后再通過三角形中位線證明即可.(2)根據(jù)圖(2)(3)進行合理猜想即可.【詳解】解:(1)連接AE,BD在△ACE和△BCD中∴△ACE≌△BCD∴AE=BD又∵點M,N,F分別為AB,ED,AD的中點∴MF=BD,NF=AE∴MF=NF(2)MF=NF.方法同上.【點睛】本題考查了三角形全等的判定和性質(zhì)以及三角形中位線的知識,做出輔助線和合理猜想是解答本題的關(guān)鍵.19、(1)本次參加抽樣調(diào)查的居民有600人;(2)補圖見解析;(3)72°;(4).【解析】試題分析:(1)用B的頻數(shù)除以B所占的百分比即可求得結(jié)論;(2)分別求得C的頻數(shù)及其所占的百分比即可補全統(tǒng)計圖;(3)算出A的所占的百分比,再進一步算出C所占的百分比,再扇形統(tǒng)計圖中C所對圓心角的度數(shù);(4)列出樹形圖即可求得結(jié)論.試題解析:(1)60÷10%=600(人).答:本次參加抽樣調(diào)查的居民有600人.(2)如圖;(3),360°×(1-10%-30%-40%)=72°.(4)如圖;(列表方法略,參照給分).P(C粽)=.答:他第二個吃到的恰好是C粽的概率是.考點:1.條形統(tǒng)計圖;2.用樣本估計總體;3.扇形統(tǒng)計圖;4.列表法與樹狀圖法.20、(1)y=(1)(1,0)【解析】
(1)將點M的坐標(biāo)代入一次函數(shù)解析式求得a的值;然后將點M的坐標(biāo)代入反比例函數(shù)解析式,求得k的值即可;(1)根據(jù)平行四邊形的性質(zhì)得到BC∥AD且BD=AD,結(jié)合圖形與坐標(biāo)的性質(zhì)求得點D的坐標(biāo).【詳解】解:(1)∵點M(a,4)在直線y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),將其代入y=得到:k=xy=1×4=4,∴反比例函數(shù)y=(x>0)的表達式為y=;(1)∵平面直角坐標(biāo)系中,直線y=1x+1與x軸,y軸分別交于A,B兩點,∴當(dāng)x=0時,y=1.當(dāng)y=0時,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴點C的縱坐標(biāo)也等于1,且點C在反比例函數(shù)圖象上,將y=1代入y=,得1=,解得x=1,∴C(1,1).∵四邊形ABCD是平行四邊形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)兩點的坐標(biāo)知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),點D在點A的右側(cè),∴點D的坐標(biāo)是(1,0).【點睛】考查了反比例函數(shù)與一次函數(shù)交點問題.熟練掌握平行四邊形的性質(zhì)和函數(shù)圖象上點的坐標(biāo)特征是解決問題的關(guān)鍵,難度適中.21、(1)詳見解析;(1)【解析】
(1)連接OE交DF于點H,由切線的性質(zhì)得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據(jù)對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據(jù)∠CBE=∠DOH,從而即可得證;(1)依據(jù)圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數(shù)的定義求出OH的值,進一步求得HE的值,利用銳角三角函數(shù)的定義進一步求得EF的值.【詳解】(1)證明:連接OE交DF于點H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點D是OC中點,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【點睛】本題主要考查切線的性質(zhì)及直角三角形的性質(zhì)、圓周角定理及三角函數(shù)的應(yīng)用,掌握圓周角定理和切線的性質(zhì)是解題的關(guān)鍵.22、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】
(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設(shè)購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數(shù),所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025深圳市途安汽車租賃有限公司租賃合同
- 2025地區(qū)代理合同樣式詳細(xì)版
- 2024年四年級英語下冊 Unit 5 What will you do this weekend Lesson 27說課稿 人教精通版(三起)
- 2023八年級生物下冊 第七單元 生物圈中生命的延續(xù)和發(fā)展第一章 生物的生殖和發(fā)育第2節(jié) 昆蟲的生殖和發(fā)育說課稿 (新版)新人教版
- 個人消防安裝合同范例
- 俄羅斯電梯采購合同范例
- Unit 4 Buying New Clothes (說課稿)-2024-2025學(xué)年閩教版英語六年級上冊001
- 以租金入股合同范例
- 中美合作合同范本
- 2024年01月河南中原銀行信陽分行誠聘社會英才筆試歷年參考題庫附帶答案詳解
- 關(guān)于防范遏制礦山領(lǐng)域重特大生產(chǎn)安全事故的硬措施課件
- 2025年中國成都餐飲業(yè)市場運營態(tài)勢分析及投資前景預(yù)測報告
- 2024年xx縣第三小學(xué)安全工作管理制度匯編
- 項目合作備忘錄范文
- 婦產(chǎn)科醫(yī)生個人年終述職報告課件
- 《費曼學(xué)習(xí)法》讀后感
- 趣味成語課程設(shè)計
- 鋼筋焊接工藝性試驗方案
- 2024年四川省涼山州中考物理適應(yīng)性試卷(附答案解析)
- 幼兒園師資培訓(xùn)課件【區(qū)域進階】科學(xué)區(qū)各年齡段目標(biāo)制定與投放材料:區(qū)域材料玩出新高度課件
- 人教版初中數(shù)學(xué)同步講義八年級上冊專題提升02 解分式方程與分式方程的實際應(yīng)用(30題)(原卷版)
評論
0/150
提交評論