2023屆湖北省武漢市江夏一中學中考適應性考試數(shù)學試題含解析_第1頁
2023屆湖北省武漢市江夏一中學中考適應性考試數(shù)學試題含解析_第2頁
2023屆湖北省武漢市江夏一中學中考適應性考試數(shù)學試題含解析_第3頁
2023屆湖北省武漢市江夏一中學中考適應性考試數(shù)學試題含解析_第4頁
2023屆湖北省武漢市江夏一中學中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,PA、PB切⊙O于A、B兩點,AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°2.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.3.某小組7名同學在一周內參加家務勞動的時間如下表所示,關于“勞動時間”的這組數(shù)據(jù),以下說法正確的是()勞動時間(小時)33.544.5人數(shù)1132A.中位數(shù)是4,眾數(shù)是4 B.中位數(shù)是3.5,眾數(shù)是4C.平均數(shù)是3.5,眾數(shù)是4 D.平均數(shù)是4,眾數(shù)是3.54.下列運算正確的是()A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=95.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.6.四組數(shù)中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數(shù)的是()A.①② B.①③ C.①④ D.①③④7.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內角和為D.任意作一個菱形其對角線相等且互相垂直平分8.把8a3﹣8a2+2a進行因式分解,結果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)29.下列幾何體中,其三視圖都是全等圖形的是()A.圓柱 B.圓錐 C.三棱錐 D.球10.2017年,山西省經(jīng)濟發(fā)展由“?!鞭D“興”,經(jīng)濟增長步入合理區(qū)間,各項社會事業(yè)發(fā)展取得顯著成績,全面建成小康社會邁出嶄新步伐.2018年經(jīng)濟總體保持平穩(wěn),第一季度山西省地區(qū)生產總值約為3122億元,比上年增長6.2%.數(shù)據(jù)3122億元用科學記數(shù)法表示為()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元11.在下面四個幾何體中,從左面看、從上面看分別得到的平面圖形是長方形、圓,這個幾何體是()A. B. C. D.12.一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系中的圖象如左圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.14.若關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍為__________.15.若關于x的方程(k﹣1)x2﹣4x﹣5=0有實數(shù)根,則k的取值范圍是_____.16.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)圖象上的概率是.17.如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.18.我們知道:1+3=4,1+3+5=9,1+3+5+7=16,…,觀察下面的一列數(shù):-1,2,,-3,4,-5,6…,將這些數(shù)排列成如圖的形式,根據(jù)其規(guī)律猜想,第20行從左到右第3個數(shù)是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,.(1)求直線的表達式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.20.(6分)如圖,在△ABC中,∠C=90°,BC=4,AC=1.點P是斜邊AB上一點,過點P作PM⊥AB交邊AC或BC于點M.又過點P作AC的平行線,與過點M的PM的垂線交于點N.設邊AP=x,△PMN與△ABC重合部分圖形的周長為y.(1)AB=.(2)當點N在邊BC上時,x=.(1)求y與x之間的函數(shù)關系式.(4)在點N位于BC上方的條件下,直接寫出過點N與△ABC一個頂點的直線平分△ABC面積時x的值.21.(6分)如圖,已知一次函數(shù)y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數(shù)y=ax1+bx+c的圖象交于y軸上一點B,該二次函數(shù)的頂點C在x軸上,且OC=1.(1)求點B坐標;(1)求二次函數(shù)y=ax1+bx+c的解析式;(3)設一次函數(shù)y=x+m的圖象與二次函數(shù)y=ax1+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標.22.(8分)發(fā)現(xiàn)如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.23.(8分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.中線AD的取值范圍是________;(2)問題解決:如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.24.(10分)一個口袋中有1個大小相同的小球,球面上分別寫有數(shù)字1、2、1.從袋中隨機地摸出一個小球,記錄下數(shù)字后放回,再隨機地摸出一個小球.(1)請用樹形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結果;(2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.25.(10分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式組:x-3(x-2)≤426.(12分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.27.(12分)先化簡(-a+1)÷,并從0,-1,2中選一個合適的數(shù)作為a的值代入求值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因為是圓的直徑,所以,根據(jù)三角形內角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點睛】本題主要考察切線的性質,四邊形和三角形的內角和以及圓周角定理。2、C【解析】

易證△DEF∽△DAB,△BEF∽△BCD,根據(jù)相似三角形的性質可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點睛】本題考查了相似三角形的判定及性質定理,熟練掌握性質定理是解題的關鍵.3、A【解析】

根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有7個人,∴第4個人的勞動時間為中位數(shù),所以中位數(shù)為4,故選A.【點睛】本題考查眾數(shù)與中位數(shù)的意義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.4、D【解析】

直接利用合并同類項法則以及二次根式的性質、二次根式乘法、零指數(shù)冪的性質分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質、二次根式乘法、零指數(shù)冪的性質,正確把握相關性質是解題關鍵.5、A【解析】

根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】解:從正面看第一層是三個小正方形,第二層中間有一個小正方形,

故選:A.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.6、C【解析】

根據(jù)倒數(shù)的定義,分別進行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項正確;②-1和1;-1×1=-1,故此選項錯誤;③0和0;0×0=0,故此選項錯誤;④?和?1,-×(-1)=1,故此選項正確;∴互為倒數(shù)的是:①④,故選C.【點睛】此題主要考查了倒數(shù)的概念及性質.倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).7、B【解析】

必然事件就是一定發(fā)生的事件,根據(jù)定義對各個選項進行判斷即可.【詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發(fā)生,是隨機事件,故本選項錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發(fā)生,是必然事件,故本選項正確;C、三角形的內角和為180°,所以任意作一個三角形其內角和為是不可能事件,故本選項錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發(fā)生,是隨機事件,故選項錯誤,故選:B.【點睛】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.熟練掌握相關圖形的性質也是解題的關鍵.8、C【解析】

首先提取公因式2a,進而利用完全平方公式分解因式即可.【詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【點睛】本題因式分解中提公因式法與公式法的綜合運用.9、D【解析】分析:任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,其他的幾何體的視圖都有不同的.詳解:圓柱,圓錐,三棱錐,球中,三視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,故選D.點睛:本題考查簡單幾何體的三視圖,本題解題的關鍵是看出各個圖形的在任意方向上的視圖.10、D【解析】

可以用排除法求解.【詳解】第一,根據(jù)科學記數(shù)法的形式可以排除A選項和C選項,B選項明顯不對,所以選D.【點睛】牢記科學記數(shù)法的規(guī)則是解決這一類題的關鍵.11、A【解析】試題分析:由題意可知:從左面看得到的平面圖形是長方形是柱體,從上面看得到的平面圖形是圓的是圓柱或圓錐,綜合得出這個幾何體為圓柱,由此選擇答案即可.解:從左面看得到的平面圖形是長方形是柱體,符合條件的有A、C、D,從上面看得到的平面圖形是圓的是圓柱或圓錐,符合條件的有A、B,綜上所知這個幾何體是圓柱.故選A.考點:由三視圖判斷幾何體.12、B【解析】

根據(jù)題中給出的函數(shù)圖像結合一次函數(shù)性質得出a<0,b>0,再由反比例函數(shù)圖像性質得出c<0,從而可判斷二次函數(shù)圖像開口向下,對稱軸:>0,即在y軸的右邊,與y軸負半軸相交,從而可得答案.【詳解】解:∵一次函數(shù)y=ax+b圖像過一、二、四,∴a<0,b>0,又∵反比例函數(shù)y=圖像經(jīng)過二、四象限,∴c<0,∴二次函數(shù)對稱軸:>0,∴二次函數(shù)y=ax2+bx+c圖像開口向下,對稱軸在y軸的右邊,與y軸負半軸相交,故答案為B.【點睛】本題考查了二次函數(shù)的圖形,一次函數(shù)的圖象,反比例函數(shù)的圖象,熟練掌握二次函數(shù)的有關性質:開口方向、對稱軸、與y軸的交點坐標等確定出a、b、c的情況是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】【分析】連接半徑和弦AE,根據(jù)直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.14、.【解析】

根據(jù)判別式的意義得到,然后解不等式即可.【詳解】解:關于的一元二次方程有兩個不相等的實數(shù)根,,解得:,故答案為:.【點睛】此題考查了一元二次方程的根的判別式:當,方程有兩個不相等的實數(shù)根;當,方程有兩個相等的實數(shù)根;當,方程沒有實數(shù)根.15、【解析】當k?1=0,即k=1時,原方程為?4x?5=0,解得:x=?,∴k=1符合題意;當k?1≠0,即k≠1時,有,解得:k?且k≠1.綜上可得:k的取值范圍為k?.故答案為k?.16、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結果,點(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點:反比例函數(shù)圖象上點的坐標特征;列表法與樹狀圖法.17、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據(jù)角平分線的性質可得出,設點A的坐標為(a,)(a>0),由可求出a值,進而得到點A的坐標.詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設點A的坐標為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標為(,),故答案為:((,)).點睛:本題考查了反比例函數(shù)圖象上點的坐標特征、全等三角形的判定與性質、角平分線的性質以及等腰直角三角形性質的綜合運用,構造全等三角形,利用全等三角形的對應邊相等是解題的關鍵.18、2【解析】

先求出19行有多少個數(shù),再加3就等于第20行第三個數(shù)是多少.然后根據(jù)奇偶性來決定負正.【詳解】∵1行1個數(shù),2行3個數(shù),3行5個數(shù),4行7個數(shù),…19行應有2×19-1=37個數(shù)∴到第19行一共有1+3+5+7+9+…+37=19×19=1.第20行第3個數(shù)的絕對值是1+3=2.又2是偶數(shù),故第20行第3個數(shù)是2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2);(3)【解析】

(1)由條件可求得A、C的坐標,利用待定系數(shù)法可求得直線AC的表達式;(2)結合圖形,當直線平移到過C、A時與矩形有一個公共點,則可求得b的取值范圍;(3)由題意可知直線l過(0,10),結合圖象可知當直線過B點時與矩形有一個公共點,結合圖象可求得k的取值范圍.【詳解】解:(1),設直線表達式為,,解得直線表達式為;(2)直線可以看到是由直線平移得到,當直線過時,直線與矩形有一個公共點,如圖1,當過點時,代入可得,解得.當過點時,可得直線與矩形有公共點時,的取值范圍為;(3),直線過,且,如圖2,直線繞點旋轉,當直線過點時,與矩形有一個公共點,逆時針旋轉到與軸重合時與矩形有公共點,當過點時,代入可得,解得直線:與矩形沒有公共點時的取值范圍為【點睛】本題為一次函數(shù)的綜合應用,涉及待定系數(shù)法、直線的平移、旋轉及數(shù)形結合思想等知識.在(1)中利用待定系數(shù)法是解題的關鍵,在(2)、(3)中確定出直線與矩形OABC有一個公共點的位置是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.20、(1)2;(2);(1)詳見解析;(4)滿足條件的x的值為.【解析】

(1)根據(jù)勾股定理可以直接求出(2)先證明四邊形PAMN是平行四邊形,再根據(jù)三角函數(shù)值求解(1)分情況根據(jù)t的大小求出不同的函數(shù)關系式(4)不同條件下:當點G是AC中點時和當點D是AB中點時,根據(jù)相似三角形的性質求解.【詳解】解:(1)在中,,故答案為2.(2)如圖1中,∴四邊形PAMN是平行四邊形,當點在上時,,.(1)①當時,如圖1,.②當時,如圖2,y③當時,如圖1,(4)如圖4中,當點是中點時,滿足條件.如圖2中,當點是中點時,滿足條件..綜上所述,滿足條件的x的值為或.【點睛】此題重點考查學生對一次函數(shù)的應用,勾股定理,平行四邊形的判定,相似三角形的性質和三角函數(shù)值的綜合應用能力,熟練掌握勾股定理和三角函數(shù)值的解法是解題的關鍵.21、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】

(1)根據(jù)y=0.5x+m交x軸于點A,進而得出m的值,再利用與y軸交于點B,即可得出B點坐標;(1)二次函數(shù)y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1.得出可設二次函數(shù)y=ax1+bx+c=a(x﹣1)1,進而求出即可;(3)根據(jù)當B為直角頂點,當D為直角頂點時,分別利用三角形相似對應邊成比例求出即可.【詳解】(1)∵y=x+1交x軸于點A(﹣4,0),∴0=×(﹣4)+m,∴m=1,與y軸交于點B,∵x=0,∴y=1∴B點坐標為:(0,1),(1)∵二次函數(shù)y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1∴可設二次函數(shù)y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函數(shù)的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)當B為直角頂點時,過B作BP1⊥AD交x軸于P1點由Rt△AOB∽Rt△BOP1∴,∴,得:OP1=1,∴P1(1,0),(Ⅱ)作P1D⊥BD,連接BP1,將y=0.5x+1與y=0.5x1﹣1x+1聯(lián)立求出兩函數(shù)交點坐標:D點坐標為:(5,4.5),則AD=,當D為直角頂點時∵∠DAP1=∠BAO,∠BOA=∠ADP1,∴△ABO∽△AP1D,∴,,解得:AP1=11.15,則OP1=11.15﹣4=7.15,故P1點坐標為(7.15,0);∴點P的坐標為:P1(1,0)和P1(7.15,0).【點睛】此題主要考查了二次函數(shù)綜合應用以及求函數(shù)與坐標軸交點和相似三角形的與性質等知識,根據(jù)已知進行分類討論得出所有結果,注意不要漏解.22、(1)見解析;(2)見解析;(3)1.【解析】

(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點睛】此題考查多邊形的內角和外角,,解題的關鍵是熟練掌握三角形的外角的性質,屬于中考??碱}型23、(1)2<AD<8;(2)證明見解析;(3)BE+DF=EF;理由見解析.【解析】試題分析:(1)延長AD至E,使DE=AD,由SAS證明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三邊關系求出AE的取值范圍,即可得出AD的取值范圍;(2)延長FD至點M,使DM=DF,連接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由線段垂直平分線的性質得出EM=EF,在△BME中,由三角形的三邊關系得出BE+BM>EM即可得出結論;(3)延長AB至點N,使BN=DF,連接CN,證出∠NBC=∠D,由SAS證明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,證出∠ECN=70°=∠ECF,再由SAS證明△NCE≌△FCE,得出EN=EF,即可得出結論.試題解析:(1)解:延長AD至E,使DE=AD,連接BE,如圖①所示:∵AD是BC邊上的中線,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三邊關系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案為2<AD<8;(2)證明:延長FD至點M,使DM=DF,連接BM、EM,如圖②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論