氧化溝系統(tǒng)出水COD預(yù)報(bào)的神經(jīng)網(wǎng)絡(luò)模型_第1頁(yè)
氧化溝系統(tǒng)出水COD預(yù)報(bào)的神經(jīng)網(wǎng)絡(luò)模型_第2頁(yè)
氧化溝系統(tǒng)出水COD預(yù)報(bào)的神經(jīng)網(wǎng)絡(luò)模型_第3頁(yè)
氧化溝系統(tǒng)出水COD預(yù)報(bào)的神經(jīng)網(wǎng)絡(luò)模型_第4頁(yè)
氧化溝系統(tǒng)出水COD預(yù)報(bào)的神經(jīng)網(wǎng)絡(luò)模型_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

氧化溝系統(tǒng)出水COD預(yù)報(bào)的神經(jīng)網(wǎng)絡(luò)模型

摘要:以漯河市污水凈化中心的Carrousel氧化溝(以下簡(jiǎn)稱氧化溝)系統(tǒng)為考察對(duì)象,針對(duì)該系統(tǒng)進(jìn)水水質(zhì)復(fù)雜,控制滯后的難點(diǎn),引入人工神經(jīng)網(wǎng)絡(luò)的理論和方法,對(duì)其模擬分析,建立了基于BP網(wǎng)絡(luò)的氧化溝系統(tǒng)出水COD預(yù)報(bào)模型。模型性能檢驗(yàn)和靈敏度檢驗(yàn)表明,建成的模型準(zhǔn)確度高,適應(yīng)性強(qiáng),可直接用于該系統(tǒng)出水COD預(yù)報(bào),這為氧化溝工藝在線控制提供了一條簡(jiǎn)便的途徑。

關(guān)鍵字:人工神經(jīng)網(wǎng)絡(luò)氧化溝系統(tǒng)出水CODTheANNModelPredictingEffluentCODofCarrouselOxidationDitchSystem.teminLuoheCenterofWastewaterTreatmentisdifficulttocontrolon-linebecausetheinfluentcharacteristicsarecomplexandvarysignificantly.Toresolvetheproblem,advancedartificialneuralnetwork(ANN)wasemployedtosimulatethecorrelationbetweenwaterparametersofoxidationditchsystemandaBPNNmodelpredictingeffluentCODwasbuiltup.Sentivityandperformancetestsshowedthatthemodelcanadapttodifferentsituationsandhasgoodabilitytogeneralize.ItcanbedirectlyusedtopredicteffluentCODconcentration,whichisveryhelpfultooxidationditchsystemcontrolon-line.Keywords:

ANN;oxidationditchsystem;effluentCOD漯河市污水凈化中心于2000年7月正式投產(chǎn),采用的是典型的極具代表性的Carrousel氧化溝工藝,污水來(lái)源主要是屠宰廢水、食品加工廢水、化工廢水和生活污水,其主要技術(shù)指標(biāo):一期工程:2000年7.7萬(wàn)噸/日(生活污水2萬(wàn)噸/日,工業(yè)污水5.7萬(wàn)噸/日),設(shè)計(jì)流量8萬(wàn)噸/日,設(shè)計(jì)的進(jìn)水負(fù)荷:COD≤500mg/l,BOD5≤200mg/l,SS≤200mg/l,設(shè)計(jì)出水指標(biāo):COD≤120mg/l,BOD5≤30mg/l,SS≤30mg/l,實(shí)際出水水質(zhì)狀況(建模(用人工神經(jīng)網(wǎng)絡(luò)建立的氧化溝出水COD預(yù)報(bào)的模型的簡(jiǎn)稱)數(shù)學(xué)數(shù)據(jù)范圍,其它不完整記錄中有超出以下范圍的記錄):SS:10~170mg/l,COD:16~77mg/l,TN:2.9~56mg/l,TP:0.03~0.91mg/l;二期工程2010年11.8萬(wàn)噸/日(生活污水2.6萬(wàn)噸/日,工業(yè)污水9.2萬(wàn)噸/日)。由于進(jìn)水中工業(yè)污水成分達(dá)到約74%,實(shí)際運(yùn)行水質(zhì)波動(dòng)極大,對(duì)系統(tǒng)構(gòu)成強(qiáng)烈沖擊,進(jìn)水COD最高記錄超過(guò)600mg/l,進(jìn)水SS經(jīng)常維持在115~600mg/l,不同工作日進(jìn)水水質(zhì)強(qiáng)烈起伏,使工藝在線控制比較棘手,出水達(dá)標(biāo)排放難以保證。對(duì)氧化溝這一復(fù)雜的活性污泥系統(tǒng),由于影響工藝過(guò)程的因素反應(yīng)的復(fù)雜性和高度非線性,常規(guī)的模型適應(yīng)能力有限,而以機(jī)理分析為基礎(chǔ)的動(dòng)力學(xué)模型要求信息完備,參數(shù)齊全,實(shí)際生產(chǎn)中不便于推廣。人工神經(jīng)網(wǎng)絡(luò)(ANN)以其連續(xù)時(shí)間的動(dòng)力學(xué)行為、良好的非線性品質(zhì)、大規(guī)模并行分布處理、高度穩(wěn)健性和學(xué)習(xí)聯(lián)想能力等特點(diǎn),被廣泛應(yīng)用于模式識(shí)別、信號(hào)處理、系統(tǒng)控制中。并且ANN可以不完備信息建模,不需要被辨識(shí)對(duì)象階次結(jié)構(gòu)等先驗(yàn)知識(shí),建模方法簡(jiǎn)單[1-3]。本研究針對(duì)該凈化中心氧化溝系統(tǒng)進(jìn)水水質(zhì)復(fù)雜、起伏大,控制滯后的難點(diǎn),通過(guò)使用BP模型,直接以正常運(yùn)行時(shí)的生產(chǎn)數(shù)據(jù)為學(xué)習(xí)樣本建模,預(yù)報(bào)出水COD,詳細(xì)探討了模型設(shè)計(jì)、訓(xùn)練及檢驗(yàn)等環(huán)節(jié),建成的模型準(zhǔn)確度較高,適應(yīng)性強(qiáng),可作為一種定性與定量相結(jié)合的有效工具,直接用于該系統(tǒng)出水COD預(yù)報(bào)。1模型原理及設(shè)計(jì)1.1

BP網(wǎng)絡(luò)模型按誤差反向傳播原則建立的BP(BackPropoga--tion)學(xué)習(xí)算法,是當(dāng)前ANN技術(shù)中最成功的學(xué)習(xí)算法,前饋型BP網(wǎng)絡(luò)及在此基礎(chǔ)上改進(jìn)的神經(jīng)網(wǎng)絡(luò),是當(dāng)前應(yīng)用最廣泛的網(wǎng)絡(luò)類型[4]。本研究以MATLAB環(huán)境下的神經(jīng)網(wǎng)絡(luò)工具箱與統(tǒng)計(jì)工具箱[5]為數(shù)學(xué)工具,編制的BP模型由三層神經(jīng)元組成,其主要特點(diǎn)是:1.1.1

輸入層由影響出水COD的各因素組成,為使樣本信息盡量豐富,并考慮到指標(biāo)監(jiān)測(cè)方便可行,選擇以下參數(shù)作為輸入矢量:X1:水溫,X2:進(jìn)水SS濃度,X3:進(jìn)水COD濃度,X4:進(jìn)水氨氮濃度,X5:MLSS,X6:MLVSS,X7:SV30(沉降30分鐘污泥體積比)。輸出層產(chǎn)生ANN輸出矢量Y,本研究希望輸出的是出水COD濃度Y。隱含層層數(shù)的選擇與問(wèn)題的復(fù)雜性有關(guān),隱含層層數(shù)的增加將使訓(xùn)練費(fèi)用急劇上升,本研究采用一層隱含層,隱節(jié)點(diǎn)數(shù)的確定考慮到兩原則:①樣本數(shù)大于網(wǎng)絡(luò)可調(diào)數(shù)[6];②幾何平均規(guī)則[7]:對(duì)一個(gè)三層網(wǎng)絡(luò),具有n個(gè)輸入節(jié)點(diǎn),m個(gè)輸出節(jié)點(diǎn),則中間層節(jié)點(diǎn)數(shù)H=。本研究取節(jié)點(diǎn)數(shù)4~14,以期對(duì)其在更大范圍優(yōu)化。圖1給出了訓(xùn)練成功的一組網(wǎng)絡(luò)結(jié)構(gòu)。1.1.2以logsig或tansig函數(shù)作為隱含層激活函數(shù),分別使用這兩種函數(shù)作網(wǎng)絡(luò)訓(xùn)練,擇優(yōu)而用。以logsig作為輸出層激活函數(shù),將輸出結(jié)果控制在[0,1],式中,b為偏差值,x表示隱含層中的節(jié)點(diǎn)數(shù)值。logsig函數(shù):tansig函數(shù):1.1.3

采用Levenberg-Marquart收斂規(guī)則,該規(guī)則采用了數(shù)值優(yōu)化算法,可根據(jù)誤差大小自動(dòng)調(diào)整牛頓法與梯度法在訓(xùn)練中的比重,是目前最快的收斂算法,大大降低了訓(xùn)練費(fèi)用。1.2訓(xùn)練集與檢驗(yàn)集ANN模型的預(yù)報(bào)能力與學(xué)習(xí)樣本質(zhì)量及信息量緊密相關(guān),出水COD預(yù)報(bào)的BP網(wǎng)絡(luò)模型(以下簡(jiǎn)稱模型)樣本數(shù)據(jù)取自漯河市污水凈化中心2000年8月至2002年2月間生產(chǎn)數(shù)據(jù),完整記錄(包括全部模型輸入輸出參數(shù))共89組,剔除發(fā)生生產(chǎn)事故(有記載的酸堿中毒、活性污泥膨脹等)狀態(tài)下記錄7組,剩余82組(考慮到數(shù)據(jù)樣本集規(guī)模不大,故包括了一些超標(biāo)排放數(shù)據(jù)),初步確定為學(xué)習(xí)樣本集。進(jìn)水水質(zhì)參數(shù)變化范圍:水溫:10.8~3℃;SS:139~1062mg/l;COD:109~694mg/l;NH4+-N:12.88~496mg/l;控制參數(shù):SV30:12~93;MLVSS:1107~3484mg/l;MLSS:2226~6226mg/l。生產(chǎn)報(bào)表無(wú)進(jìn)水水量記載,故假定每個(gè)工作日進(jìn)水水量連續(xù)穩(wěn)定,但建成模型檢驗(yàn)結(jié)果反映出進(jìn)水水量是一個(gè)重要模型參數(shù),由于缺乏相關(guān)數(shù)據(jù),使得模型性能欠佳。篩選出82組代表性數(shù)據(jù)中,通過(guò)主要成分分析及聚類分析[8],發(fā)現(xiàn)三組樣本有離群傾向,但不太突出,不做去除,以防止信息量的損失,最終確定學(xué)習(xí)樣本規(guī)模為82組。以歐氏距離作為表征相似性的統(tǒng)計(jì)量,采用平均距離判斷依據(jù)將原始樣本分為10類,根據(jù)聚類結(jié)果,從各類中隨機(jī)挑選1/3左右的樣本歸入檢驗(yàn)集,剩余的歸入訓(xùn)練集。最終確定47組用于訓(xùn)練,35組用于檢驗(yàn)。聚類分析,保證了所取的訓(xùn)練樣本分布均勻且能覆蓋原始樣本提供的結(jié)構(gòu)信息,彌補(bǔ)了原始數(shù)據(jù)量較少的不足。對(duì)訓(xùn)練集與檢驗(yàn)集數(shù)據(jù)做預(yù)處理,筆者在此提出三點(diǎn)規(guī)范:①保持原始樣本統(tǒng)計(jì)規(guī)律,數(shù)據(jù)拓?fù)浣Y(jié)構(gòu)。②絕大部分網(wǎng)絡(luò)期望輸出要在輸出層激活函數(shù)的敏感區(qū)內(nèi),避免進(jìn)入不應(yīng)區(qū)。對(duì)logsig函數(shù)而言,敏感區(qū)為[0.15,0.85]。③網(wǎng)絡(luò)輸出逆變換不能放大誤差。本研究對(duì)原始數(shù)據(jù)作如下預(yù)處理,式中x表是原始值,xmin與xmax分別表示原始值中的最小值與最大值,xnorm表示訓(xùn)練輸入值:1.3建模試驗(yàn)要點(diǎn)1.3.1由于訓(xùn)練、檢驗(yàn)樣本自身含有噪聲,其大小未知,故建模應(yīng)以預(yù)報(bào)準(zhǔn)確度作為首要目標(biāo),精度作為次要目標(biāo)。這里引入①檢驗(yàn)誤差E:檢驗(yàn)樣本網(wǎng)絡(luò)輸出值允許誤差的上限;②準(zhǔn)確度:不大于E的檢驗(yàn)合格率。用訓(xùn)練總平方誤差G衡量模型精度,精度不可過(guò)高,否則會(huì)誘導(dǎo)網(wǎng)絡(luò)記住噪聲。如何協(xié)調(diào)精度與準(zhǔn)確度之間的矛盾,找出二者最佳組合,盡可能達(dá)到模型性能最優(yōu)化是數(shù)值試驗(yàn)的重中之重。1.3.2BP網(wǎng)絡(luò)學(xué)習(xí)收斂速度及局部最小點(diǎn)的性能對(duì)初始化權(quán)值、偏差矩陣十分敏感,本研究通過(guò)加大隨機(jī)初始化次數(shù)來(lái)搜索模型滿意解,對(duì)給定的網(wǎng)絡(luò)結(jié)構(gòu)及參數(shù)組合實(shí)行1000次隨機(jī)初始化權(quán)值、偏差矩陣搜索。1.3.3模型性能檢驗(yàn),采用四項(xiàng)指標(biāo)[9-12]:相關(guān)系數(shù)C,均方根誤差R,標(biāo)準(zhǔn)均方根誤差N,平均相對(duì)誤差A(yù),如下式中x、y分別表示輸入與輸出樣本值,下標(biāo)i表示第i次訓(xùn)練時(shí)對(duì)應(yīng)樣本值,n表示訓(xùn)練次數(shù),、表示相應(yīng)樣本均值,x1i表示輸入第一個(gè)變量的第i個(gè)樣本值,x2i類推:對(duì)網(wǎng)絡(luò)實(shí)際輸出與期望輸出(觀測(cè)值)作指標(biāo)檢驗(yàn),可反映出模型的逼近性能。1.3.4模型的靈敏度檢驗(yàn)[13]:目標(biāo)值在多維空間中每一點(diǎn)隨各個(gè)自變量改變而改變的趨勢(shì)。靈敏度曲線平緩表明該項(xiàng)輸入對(duì)網(wǎng)絡(luò)輸出的影響過(guò)弱,靈敏度曲線出現(xiàn)突變或中斷表示該項(xiàng)輸入對(duì)網(wǎng)絡(luò)輸出的影響過(guò)強(qiáng),此時(shí)模型模擬性能不穩(wěn)定,碰到這兩種情況,應(yīng)繼續(xù)搜索或調(diào)整輸入變量個(gè)數(shù)重新訓(xùn)練。2

模型訓(xùn)練及檢驗(yàn)建模數(shù)值試驗(yàn)參數(shù)調(diào)整范圍設(shè)定:E:0.2~0.4;G:0.001~0.5;隱節(jié)點(diǎn)數(shù)H:4~14;隱含層激活函數(shù):tansig或logsig;輸出層激活函數(shù):logsig;訓(xùn)練最大迭代次數(shù):1000。從72,000次搜索訓(xùn)練中篩選出最佳的一組解:網(wǎng)絡(luò)結(jié)構(gòu)7-6-1(三層神經(jīng)網(wǎng)絡(luò)每層節(jié)點(diǎn)數(shù)),E=0.3,G=0.15,H=6,隱含層函數(shù):tansig。模型訓(xùn)練經(jīng)過(guò)18次迭代達(dá)到穩(wěn)定,訓(xùn)練總平方誤差0.13,圖2為誤差下降曲線;模型模擬及檢驗(yàn)(預(yù)報(bào))結(jié)果見(jiàn)圖3。圖2誤差下降曲線Fig2.TheErrorCurveofTraining模型性能指標(biāo)值見(jiàn)表1。表1模型性能指標(biāo)Tab1TheValuesofModelPerformanceTesting指標(biāo)CRNA模擬0.95175.01520.13090.1214預(yù)報(bào)0.73999.92250.26450.2436綜合0.87097.51270.19780.1736從學(xué)習(xí)樣本集檢驗(yàn)合格的樣本中任取一組樣本,對(duì)應(yīng)輸入矢量X1…X7分別為:{14.3,273,292,33,5479,3394,44},考察網(wǎng)絡(luò)輸出隨單項(xiàng)輸入變化而改變的趨勢(shì),靈敏度曲線見(jiàn)圖4圖3

出水COD原始值與模擬/預(yù)報(bào)結(jié)果Fig.3.

ObservedandSimulated/PredictedResultsofEffluentCOD圖4

模型靈敏度曲線

Fig4.TheSentivityCurvesofModel

3討論3.1學(xué)習(xí)樣本的質(zhì)量對(duì)模型預(yù)報(bào)精度及準(zhǔn)確度影響極大。學(xué)習(xí)樣本自身的噪聲干擾降低了模型的預(yù)報(bào)精度及準(zhǔn)確度。盡管通過(guò)主成分分析與聚類分析有效挖掘了樣本信息,噪聲干擾與訓(xùn)練樣本規(guī)模較小是模型訓(xùn)練準(zhǔn)確度與精度進(jìn)一步提高的主要障礙。3.2模型性能檢驗(yàn)基本合格,檢驗(yàn)集對(duì)應(yīng)的平均相對(duì)誤差<0.25,相關(guān)系數(shù)接近0.75,標(biāo)準(zhǔn)均方根誤差0.26,通過(guò)圖3可看出,模型在預(yù)報(bào)區(qū)能對(duì)出水COD峰值作出正確響應(yīng),表明網(wǎng)絡(luò)在訓(xùn)練中捕捉到了氧化溝系統(tǒng)參數(shù)間關(guān)系的本質(zhì)。在E≤0.3的前提下,預(yù)報(bào)準(zhǔn)確率達(dá)到82.9%,在E≤0.35的前提下,預(yù)報(bào)準(zhǔn)確率達(dá)到88.6%,綜合相關(guān)系數(shù)0.87,綜合標(biāo)準(zhǔn)均方根誤差0.19,建成的模型可行。3.3數(shù)值試驗(yàn)中,提高精度,準(zhǔn)確度下降;降低精度,準(zhǔn)確度上升。對(duì)含較大噪聲的樣本訓(xùn)練而言,適當(dāng)降低精度,把檢驗(yàn)重點(diǎn)放在準(zhǔn)確度上是可取的。3.4從靈敏度曲線分析可見(jiàn),出水COD對(duì)7項(xiàng)輸入?yún)?shù)的靈敏度均較高,靈敏度曲線光滑,并且能定量反映出給定水質(zhì)條件下出水COD與單項(xiàng)輸入?yún)?shù)的相關(guān)性及單項(xiàng)參數(shù)對(duì)出水COD的最佳控制點(diǎn)。4

結(jié)論1以漯河市污水凈化中心氧化溝系統(tǒng)為考察對(duì)象,采用人工神經(jīng)網(wǎng)絡(luò)方法對(duì)其進(jìn)行模擬分析,建立了氧化溝系統(tǒng)出水COD預(yù)報(bào)模型(以下簡(jiǎn)稱預(yù)報(bào)模型)。2建立的預(yù)報(bào)模型,在E≤0.3的前提下,預(yù)報(bào)準(zhǔn)確率達(dá)到82.9%,在E≤0.35的前提下,預(yù)報(bào)準(zhǔn)確率達(dá)到88.6%,綜合相關(guān)系數(shù)0.87,綜合標(biāo)準(zhǔn)均方根誤差0.19。3建立的預(yù)報(bào)模型,出水COD對(duì)7項(xiàng)輸入?yún)?shù)的靈敏度均較高,靈敏度曲線光滑,并且能定量反映出給定水質(zhì)條件下出水COD與單項(xiàng)輸入?yún)?shù)的相關(guān)性及單項(xiàng)參數(shù)對(duì)出水COD的最佳控制點(diǎn),為建立水質(zhì)參數(shù)的反饋控制模型,將預(yù)報(bào)與反饋控制相結(jié)合,實(shí)現(xiàn)氧化溝系統(tǒng)在線智能控制奠定了基礎(chǔ)。參考文獻(xiàn):1

靳蕃.神經(jīng)計(jì)算智能基礎(chǔ)原理、方法[M].成都:西南交通大學(xué)出出版社,2000.2

田禹,王寶貞,周定.人工神經(jīng)網(wǎng)絡(luò)對(duì)水處理系統(tǒng)建模適應(yīng)性研究[J].環(huán)境科學(xué)學(xué)報(bào),1999,19(1):33-36.3

郭勁松,龍騰銳,高旭等.間歇曝氣活性污泥系統(tǒng)神經(jīng)網(wǎng)絡(luò)水質(zhì)模型[J].中國(guó)給水排水,2000,16(11):15-18.4

楊建剛.人工神經(jīng)網(wǎng)絡(luò)實(shí)用教程[M].杭州:浙江大學(xué)出版社,2001.5

聞新,周露,王丹力等.MATLAB神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)[M].北京:科學(xué)出版社,2000.6張愛(ài)茜,韓朔睽,沈洲等.運(yùn)用回歸分析與人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)含硫芳香族化合物好氧生物降解速率常數(shù)[J].環(huán)境科學(xué),1998,19(1):37-40.7

朱東海,張土喬,任愛(ài)珠等.BP神經(jīng)網(wǎng)絡(luò)用于給水管網(wǎng)模擬試驗(yàn)時(shí)的構(gòu)造參數(shù)設(shè)計(jì)[J].給水排水,2001,27(2):10-13.8蘇金明,阮沈勇.MATL

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論