版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,152.已知平面內不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣53.如圖,△ABC中,∠CAB=65°,在同一平面內,將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°4.下列計算正確的是()A.﹣2x﹣2y3?2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy5.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π6.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當時,的度數(shù)是()A. B. C. D.7.下列說法正確的是()A.2a2b與–2b2a的和為0B.的系數(shù)是,次數(shù)是4次C.2x2y–3y2–1是3次3項式D.x2y3與–是同類項8.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π9.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.310.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.5二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,順次連接矩形四邊的中點得到四邊形EFGH.若AB=8,AD=6,則四邊形EFGH的周長等于__________.12.計算:(+)=_____.13.已知平面直角坐標系中的點A(2,﹣4)與點B關于原點中心對稱,則點B的坐標為_____14.因式分解:______.15.邊長為3的正方形網(wǎng)格中,⊙O的圓心在格點上,半徑為3,則tan∠AED=_______.16.分解因式:ab2﹣9a=_____.17.如圖是由兩個長方體組合而成的一個立體圖形的三視圖,根據(jù)圖中所示尺寸(單位:mm),計算出這個立體圖形的表面積.三、解答題(共7小題,滿分69分)18.(10分)如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數(shù)的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.19.(5分)如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側,且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.20.(8分)(11分)閱讀資料:如圖1,在平面之間坐標系xOy中,A,B兩點的坐標分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖1,在平面直角坐標系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當⊙O的半徑為r時,⊙O的方程可寫為:x1+y1=r1.問題拓展:如果圓心坐標為P(a,b),半徑為r,那么⊙P的方程可以寫為.綜合應用:如圖3,⊙P與x軸相切于原點O,P點坐標為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.①證明AB是⊙P的切點;②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以Q為圓心,以OQ為半徑的⊙O的方程;若不存在,說明理由.21.(10分)每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設備,現(xiàn)有甲、乙兩種型號的設備可供選購,經調查:購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.求甲、乙兩種型號設備的價格;該公司經預算決定購買節(jié)省能源的新設備的資金不超過110萬元,你認為該公司有幾種購買方案;在(2)的條件下,已知甲型設備的產量為240噸/月,乙型設備的產量為180噸/月,若每月要求總產量不低于2040噸,為了節(jié)約資金,請你為該公司設計一種最省錢的購買方案.22.(10分)中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.(1)若苗圃園的面積為72平方米,求x;(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.23.(12分)“食品安全”受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù);(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.24.(14分)如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標;(3)在(2)的條件下,將線段FG繞點G順時針旋轉一個角α(0°<α<90°),在旋轉過程中,設線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.2、A【解析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數(shù).3、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉問題;2.平行線的性質;3.旋轉的性質;4.等腰三角形的性質.4、D【解析】
A.根據(jù)同底數(shù)冪乘法法則判斷;B.根據(jù)積的乘方法則判斷即可;C.根據(jù)平方差公式計算并判斷;D.根據(jù)同底數(shù)冪除法法則判斷.【詳解】A.-2x-2y32x3y=-4xy4,故本選項錯誤;B.
(?2a2)3=?8a6,故本項錯誤;C.
(2a+1)(2a?1)=4a2?1,故本項錯誤;D.35x3y2÷5x2y=7xy,故本選項正確.故答案選D.【點睛】本題考查了同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式,解題的關鍵是熟練的掌握同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式.5、C【解析】
根據(jù)題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.6、B【解析】
連接OB,由切線的性質可得,由鄰補角相等和四邊形的內角和可得,再由圓周角定理求得,然后由平行線的性質即可求得.【詳解】解,連結OB,∵、是的切線,∴,,則,∵四邊形APBO的內角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質、圓周角定理、平行線的性質和四邊形的內角和,解題的關鍵是靈活運用有關定理和性質來分析解答.7、C【解析】
根據(jù)多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義逐一判斷可得.【詳解】A、2a2b與-2b2a不是同類項,不能合并,此選項錯誤;B、πa2b的系數(shù)是π,次數(shù)是3次,此選項錯誤;C、2x2y-3y2-1是3次3項式,此選項正確;D、x2y3與﹣相同字母的次數(shù)不同,不是同類項,此選項錯誤;故選C.【點睛】本題主要考查多項式、單項式、同類項,解題的關鍵是掌握多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義.8、D【解析】
根據(jù)三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點睛】本題主要考查由三視圖判斷幾何體,解題的關鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關計算.9、C【解析】
連接EG、FG,根據(jù)斜邊中線長為斜邊一半的性質即可求得EG=FG=BC,因為D是EF中點,根據(jù)等腰三角形三線合一的性質可得GD⊥EF,再根據(jù)勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質、勾股定理以及等腰三角形三線合一的性質,本題中根據(jù)等腰三角形三線合一的性質求得GD⊥EF是解題的關鍵.10、D【解析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質和等腰三角形的性質得:∠ACE=30°,最后由平行線的性質可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質、等腰三角形的性質、直角三角形30度角的性質、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質,證明△ABE是等邊三角形是解決問題的關鍵,并熟練掌握同高三角形面積的關系.二、填空題(共7小題,每小題3分,滿分21分)11、20.【解析】分析:連接AC,BD,根據(jù)勾股定理求出BD,根據(jù)三角形中位線定理,菱形的判定定理得到四邊形EHGF為菱形,根據(jù)菱形的性質計算.解答:連接AC,BD在Rt△ABD中,BD=∵四邊形ABCD是矩形,∴AC=BD=10,∵E、H分別是AB、AD的中點,∴EH∥BD,EF=BD=5,同理,F(xiàn)G∥BD,FG=BD=5,GH∥AC,GH=AC=5,∴四邊形EHGF為菱形,∴四邊形EFGH的周長=5×4=20,故答案為20.點睛:本題考查了中點四邊形,掌握三角形的中位線定理、菱形的判定定理是解答本題的關鍵.12、1.【解析】
去括號后得到答案.【詳解】原式=×+×=2+1=1,故答案為1.【點睛】本題主要考查了去括號的概念,解本題的要點在于二次根式的運算.13、(﹣2,4)【解析】
根據(jù)點P(x,y)關于原點對稱的點為(-x,-y)即可得解.【詳解】解:∵點A(2,-4)與點B關于原點中心對稱,
∴點B的坐標為:(-2,4).
故答案為:(-2,4).【點睛】此題主要考查了關于原點對稱點的性質,正確掌握橫縱坐標的關系是解題關鍵.14、【解析】
先提取公因式x,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1.故答案為:x(y+1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.15、【解析】
根據(jù)同弧或等弧所對的圓周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.【詳解】解:∵∠AED=∠ABD(同弧所對的圓周角相等),∴tan∠AED=tanB=.故答案為:.【點睛】本題主要考查了圓周角定理、銳角三角函數(shù)的定義.解答網(wǎng)格中的角的三角函數(shù)值時,一般是將所求的角與直角三角形中的等角聯(lián)系起來,通過解直角三角形中的三角函數(shù)值來解答問題.16、a(b+3)(b﹣3).【解析】
根據(jù)提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).【點睛】本題考查了因式分解,一提,二套,三檢查,分解要徹底.17、100mm1【解析】
首先根據(jù)三視圖得到兩個長方體的長,寬,高,在分別表示出每個長方體的表面積,最后減去上面的長方體與下面的長方體的接觸面積即可.【詳解】根據(jù)三視圖可得:上面的長方體長4mm,高4mm,寬1mm,下面的長方體長8mm,寬6mm,高1mm,∴立體圖形的表面積是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案為100mm1.【點睛】此題主要考查了由三視圖判斷幾何體以及求幾何體的表面積,根據(jù)圖形看出長方體的長,寬,高是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】
(1)利用對稱軸公式求出m的值,即可確定出解析式;(1)根據(jù)x的范圍,利用二次函數(shù)的增減性確定出y的范圍即可;(3)根據(jù)題意確定出D與A坐標,進而求出直線AD解析式,設出E坐標,利用對稱性確定出E坐標即可.【詳解】(1)∵拋物線對稱軸為直線x=﹣1,∴﹣=﹣1,即m=﹣1,則二次函數(shù)解析式為y=﹣x1﹣1x+6;(1)當x=﹣時,y=;當x=1時,y=.∵﹣<x<1位于對稱軸右側,y隨x的增大而減小,∴<y<;(3)當x=﹣1時,y=8,∴頂點D的坐標是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵點A在點B的左側,∴點A坐標為(﹣6,0).設直線AD解析式為y=kx+b,可得:,解得:,即直線AD解析式為y=1x+11.設E(0,n),則有E′(﹣4,n),代入y=1x+11中得:n=4,則點E坐標為(0,4).【點睛】本題考查了拋物線與x軸的交點,以及二次函數(shù)的性質,熟練掌握二次函數(shù)的性質是解答本題的關鍵.19、(1)見解析(2)當AF=時,四邊形BCEF是菱形.【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根據(jù)SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四邊形BCEF是平行四邊形.(2)由四邊形BCEF是平行四邊形,可得當BE⊥CF時,四邊形BCEF是菱形,所以連接BE,交CF與點G,證得△ABC∽△BGC,由相似三角形的對應邊成比例,即可求得AF的值.【詳解】(1)證明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四邊形BCEF是平行四邊形.(2)解:連接BE,交CF與點G,∵四邊形BCEF是平行四邊形,∴當BE⊥CF時,四邊形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴,即.∴.∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣.∴當AF=時,四邊形BCEF是菱形.20、問題拓展:(x﹣a)1+(y﹣b)1=r1綜合應用:①見解析②點Q的坐標為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:問題拓展:設A(x,y)為⊙P上任意一點,則有AP=r,根據(jù)閱讀材料中的兩點之間距離公式即可求出⊙P的方程;綜合應用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當點Q在線段BP中點時,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點坐標可求出OP、OB.過點Q作QH⊥OB于H,易證△BHQ∽△BOP,根據(jù)相似三角形的性質可求出QH、BH,進而求出OH,就可得到點Q的坐標,然后運用問題拓展中的結論就可解決問題.試題解析:解:問題拓展:設A(x,y)為⊙P上任意一點,∵P(a,b),半徑為r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案為(x﹣a)1+(y﹣b)1=r1;綜合應用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切線;②存在到四點O,P,A,B距離都相等的點Q.當點Q在線段BP中點時,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此時點Q到四點O,P,A,B距離都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P點坐標為(0,6),∴OP=6,OB=OP=3.過點Q作QH⊥OB于H,如圖3,則有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴點Q的坐標為(4,3),∴OQ==5,∴以Q為圓心,以OQ為半徑的⊙O的方程為(x﹣4)1+(y﹣3)1=15.考點:圓的綜合題;全等三角形的判定與性質;等腰三角形的性質;直角三角形斜邊上的中線;勾股定理;切線的判定與性質;相似三角形的判定與性質;銳角三角函數(shù)的定義.21、(1)甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元.(2)有6種購買方案.(3)最省錢的購買方案為,選購甲型設備4臺,乙型設備6臺.【解析】
(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,根據(jù)購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元可列出方程組,解之即可;(2)設購買甲型設備臺,乙型設備臺,根據(jù)購買節(jié)省能源的新設備的資金不超過110萬元列不等式,解之確定m的值,即可確定方案;(3)因為公司要求每月的產量不低于2040噸,據(jù)此可得關于m的不等式,解之即可由m的值確定方案,然后進行比較,做出選擇即可.【詳解】(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,由題意得:,解得:,則甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元;(2)設購買甲型設備臺,乙型設備臺,則,∴,∵取非負整數(shù),∴,∴有6種購買方案;(3)由題意:,∴,∴為4或5,當時,購買資金為:(萬元),當時,購買資金為:(萬元),則最省錢的購買方案是選購甲型設備4臺,乙型設備6臺.【點睛】本題考查了二元一次方程組的應用,一元一次不等式的應用,弄清題意,找準等量關系、不等關系列出方程組與不等式是解題的關鍵.22、(1)x=2;(2)苗圃園的面積最大為12.5平方米,最小為5平方米;(3)6≤x≤4.【解析】
(1)根據(jù)題意得方程求解即可;(2)設苗圃園的面積為y,根據(jù)題意得到二次函數(shù)解析式y(tǒng)=x(31-2x)=-2x2+31x,根據(jù)二次函數(shù)的性質求解即可;(3)由題意得不等式,即可得到結論.【詳解】解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3,x2=2.又∵31-2x≤3,即x≥6,∴x=2(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最小=4×(31-22)=5.(3)令x(31-2x)=41,得x2-15x+51=1.解得x1=5,x2=1∴x的取值范圍是5≤x≤4.23、(1)60,90°;(2)補圖見解析;(3)300;(4).【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總人數(shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調查的總人數(shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總人數(shù)乘以“了解”和“基本了解”程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程度的總人數(shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.詳解:(1)60;90°.(2)補全的條形統(tǒng)計圖如圖所示.(3)對食品安全知識達到“了解”和“基本了解”的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù)為.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024二手房買賣合同版深圳市二手房買賣合同
- 個人信用貸款還款
- 終止工程合同協(xié)議書
- 2.1創(chuàng)新改變生活(導學案) 2024-2025學年統(tǒng)編版道德與法治九年級上冊
- 生物中圖版自主訓練:第一單元第一章第二節(jié)受精作用
- 施工合作協(xié)議書樣本
- 公司合作合伙協(xié)議(書)范本
- 二手車居間合同2024年
- 2025屆新高考化學熱點沖刺復習酸堿中和滴定實驗
- 就業(yè)協(xié)議遺失證明的出具單位
- 我的生涯發(fā)展報告
- 普通高中通用技術課程標準解讀學習教案
- 公共場所中文標識英文譯寫規(guī)范 第4部分:體育
- 2024年中國華能集團有限公司招聘筆試參考題庫附帶答案詳解
- 創(chuàng)業(yè)計劃書小紅書
- 角膜炎的原因和治療藥物選擇
- 電力電纜及附件基礎知識
- 品牌授權書中英文版本
- 鐵的氫氧化物(課件)
- 風光水多能互補電站建設
- 冷庫安全危險因素和管控與應急措施培訓課件
評論
0/150
提交評論