




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,則的大小關系為()A. B. C. D.2.函數(shù)的部分圖象如圖所示,則的單調遞增區(qū)間為()A. B.C. D.3.為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學運算最強4.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.5.設等比數(shù)列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知命題,且是的必要不充分條件,則實數(shù)的取值范圍為()A. B. C. D.7.若復數(shù)滿足(為虛數(shù)單位),則其共軛復數(shù)的虛部為()A. B. C. D.8.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關于點成中心對稱C.函數(shù)在單調遞增D.函數(shù)的圖象向右平移后關于原點成中心對稱9.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.10.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.511.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.12.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線上動點,是拋物線的焦點,點的坐標為,則的最小值為______________.14.下圖是一個算法流程圖,則輸出的S的值是______.15.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數(shù)=____。16.函數(shù)滿足,當時,,若函數(shù)在上有1515個零點,則實數(shù)的范圍為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的內角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設為邊上一點,且,求的面積.18.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.19.(12分)表示,中的最大值,如,己知函數(shù),.(1)設,求函數(shù)在上的零點個數(shù);(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.20.(12分)在中,角所對的邊分別是,且.(1)求角的大??;(2)若,求邊長.21.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.22.(10分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由指數(shù)函數(shù)的圖像與性質易得最小,利用作差法,結合對數(shù)換底公式及基本不等式的性質即可比較和的大小關系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質可知,由對數(shù)函數(shù)的圖像與性質可知,,所以最??;而由對數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.2、D【解析】
由圖象可以求出周期,得到,根據(jù)圖象過點可求,根據(jù)正弦型函數(shù)的性質求出單調增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點,所以,故可取,所以令,解得所以函數(shù)的單調遞增區(qū)間為故選:.【點睛】本題主要考查了三角函數(shù)的圖象與性質,利用“五點法”求函數(shù)解析式,屬于中檔題.3、D【解析】
根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.4、B【解析】
根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.5、C【解析】
根據(jù)等比數(shù)列的前項和公式,判斷出正確選項.【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項和公式,屬于基礎題.6、D【解析】
求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實數(shù)的取值范圍為.故選:.【點睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問題一般是把充分條件、必要條件或充要條件轉化為集合之間的關系,然后根據(jù)集合之間關系列出關于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時,一定要注意區(qū)間端點值的檢驗.7、D【解析】
由已知等式求出z,再由共軛復數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數(shù)=-1+,虛部為1故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算和共軛復數(shù)的基本概念,屬于基礎題.8、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質,即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質,其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質求解是解答的關鍵,著重考查了數(shù)形結合思想,以及運算與求解能力,屬于基礎題.9、D【解析】
設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.10、C【解析】
由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.11、A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.12、C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點睛】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當和拋物線相切時,的值最小.再利用直線的斜率公式、導數(shù)的幾何意義求得切點的坐標,從而求得的最小值.【詳解】解:由題意可得,拋物線的焦點,準線方程為,過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當最小時,的值最小.設切點,由的導數(shù)為,則的斜率為,求得,可得,,,.故答案為:.【點睛】本題考查拋物線的定義,性質的簡單應用,直線的斜率公式,導數(shù)的幾何意義,屬于中檔題.14、【解析】
根據(jù)流程圖,運行程序即得.【詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【點睛】本題考查算法流程圖,是基礎題.15、或1【解析】
利用導數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導數(shù)求切線方程,以及直線方程的運用,三角形的面積求法。16、【解析】
由已知,在上有3個根,分,,,四種情況討論的單調性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個根,而含505個周期,所以在上有3個根,設,,易知在上單調遞減,在,上單調遞增,又,.若時,在上無根,在必有3個根,則,即,此時;若時,在上有1個根,注意到,此時在不可能有2個根,故不滿足;若時,要使在有2個根,只需,解得;若時,在上單調遞增,最多只有1個零點,不滿足題意;綜上,實數(shù)的范圍為.故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,涉及到函數(shù)的周期性、分類討論函數(shù)的零點,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)先求出角,進而可得出,則①②中有且只有一個正確,③正確,然后分①③正確和②③正確兩種情況討論,結合三角形的面積公式和余弦定理可求得的值;(2)計算出和,計算出,可得出,進而可求得的面積.【詳解】(1)因為,所以,得,,,為鈍角,與矛盾,故①②中僅有一個正確,③正確.顯然,得.當①③正確時,由,得(無解);當②③正確時,由于,,得;(2)如圖,因為,,則,則,.【點睛】本題考查解三角形綜合應用,涉及三角形面積公式和余弦定理的應用,考查計算能力,屬于中等題.18、(1)見解析;(2)最大值為.【解析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調性求出該函數(shù)的最小值,進而可證得結論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進而可得出實數(shù)的最大值.【詳解】(1).當時,函數(shù)單調遞減,則;當時,函數(shù)單調遞增,則;當時,函數(shù)單調遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當且僅當時等號成立,所以,實數(shù)的最大值為.【點睛】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.19、(1)個;(1)存在,.【解析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設,結合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點,即在上零點的個數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設存在實數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設,令,得遞增;令,得遞減,∴,當即時,,∴,∵,∴4.故當時,對恒成立,.......................8分當即時,在上遞減,∴.∵,∴,故當時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實數(shù),使得對恒成立,且的取值范圍為................................................11分考點:導數(shù)應用.【思路點睛】本題考查了函數(shù)恒成立問題;利用導數(shù)來判斷函數(shù)的單調性,進一步求最值;屬于難題.本題考查函數(shù)導數(shù)與單調性.確定零點的個數(shù)問題:可利用數(shù)形結合的辦法判斷交點個數(shù),如果函數(shù)較為復雜,可結合導數(shù)知識確定極值點和單調區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數(shù)的值域問題處理.恒成立問題以及可轉化為恒成立問題的問題,往往可利用參變分離的方法,轉化為求函數(shù)最值處理.也可構造新函數(shù)然后利用導數(shù)來求解.注意利用數(shù)形結合的數(shù)學思想方法.20、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2019-2025年一級建造師之一建市政公用工程實務提升訓練試卷A卷附答案
- 2025年初級經濟師之初級建筑與房地產經濟??碱A測題庫(奪冠系列)
- 2025年度二月份建筑裝飾工程AI設計施工協(xié)同協(xié)議
- 2025新版城市建設用地使用權轉讓合同
- 2025年度購銷合同模板
- 農資銷售合同樣本
- 機場急救飛行通訊稿
- 2025年個人抵押借款合同模板
- 國際視野社團培養(yǎng)全球思維計劃
- 2025個人借款抵押合同范本
- 測爆、測氧儀操作規(guī)程
- 煙花爆竹生產企業(yè)安全生產風險監(jiān)測預警系統(tǒng)建設方案
- 抗腫瘤藥物處方審核要點
- 熱處理危險有害因素辨識及控制措施
- 工業(yè)用烤箱安全操作規(guī)程范本
- 文件資料交接清單
- 圍填海服務方案費用
- 人體解剖學與組織胚胎學課件
- 波導圓極化器結構形式的選擇
- 通風與空調系統(tǒng)調試方案
- 第三單元名著導讀《經典常談》04《詩經》第四 統(tǒng)編版語文八年級下冊
評論
0/150
提交評論