2023屆四川省樂山市高考考前模擬數(shù)學(xué)試題含解析_第1頁
2023屆四川省樂山市高考考前模擬數(shù)學(xué)試題含解析_第2頁
2023屆四川省樂山市高考考前模擬數(shù)學(xué)試題含解析_第3頁
2023屆四川省樂山市高考考前模擬數(shù)學(xué)試題含解析_第4頁
2023屆四川省樂山市高考考前模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且2.集合的真子集的個數(shù)是()A. B. C. D.3.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.04.小張家訂了一份報(bào)紙,送報(bào)人可能在早上之間把報(bào)送到小張家,小張離開家去工作的時(shí)間在早上之間.用表示事件:“小張?jiān)陔x開家前能得到報(bào)紙”,設(shè)送報(bào)人到達(dá)的時(shí)間為,小張離開家的時(shí)間為,看成平面中的點(diǎn),則用幾何概型的公式得到事件的概率等于()A. B. C. D.5.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.6.已知,且,則在方向上的投影為()A. B. C. D.7.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形8.函數(shù)的圖像大致為()A. B.C. D.9.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題10.已知函,,則的最小值為()A. B.1 C.0 D.11.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.12.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.84二、填空題:本題共4小題,每小題5分,共20分。13.(x+y)(2x-y)5的展開式中x3y3的系數(shù)為________.14.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.15.已知角的終邊過點(diǎn),則______.16.已知點(diǎn)是直線上的一點(diǎn),將直線繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)角,所得直線方程是,若將它繼續(xù)旋轉(zhuǎn)角,所得直線方程是,則直線的方程是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某健身館為響應(yīng)十九屆四中全會提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對全民健身運(yùn)動的參與程度,推出了健身促銷活動,收費(fèi)標(biāo)準(zhǔn)如下:健身時(shí)間不超過1小時(shí)免費(fèi),超過1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為20元(不足l小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人各自獨(dú)立地來該健身館健身,設(shè)甲、乙健身時(shí)間不超過1小時(shí)的概率分別為,,健身時(shí)間1小時(shí)以上且不超過2小時(shí)的概率分別為,,且兩人健身時(shí)間都不會超過3小時(shí).(1)設(shè)甲、乙兩人所付的健身費(fèi)用之和為隨機(jī)變量(單位:元),求的分布列與數(shù)學(xué)期望;(2)此促銷活動推出后,健身館預(yù)計(jì)每天約有300人來參與健身活動,以這兩人健身費(fèi)用之和的數(shù)學(xué)期望為依據(jù),預(yù)測此次促銷活動后健身館每天的營業(yè)額.18.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點(diǎn),成等差數(shù)列,且,求a的值.19.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)記數(shù)列的前n項(xiàng)和為,,求數(shù)列的前n項(xiàng)和.20.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點(diǎn)是射線與直線的公共點(diǎn),點(diǎn)是與曲線的公共點(diǎn),求的最大值.21.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.22.(10分)如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)為線段上的點(diǎn),過三點(diǎn)的平面與交于點(diǎn).將①,②,③中的兩個補(bǔ)充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點(diǎn)睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.2、C【解析】

根據(jù)含有個元素的集合,有個子集,有個真子集,計(jì)算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點(diǎn)睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎(chǔ)題.3、B【解析】

先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【點(diǎn)睛】本題考查向量的幾何意義,考查投影公式的應(yīng)用,是基礎(chǔ)題.4、D【解析】

這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點(diǎn)睛】考查幾何概型,是基礎(chǔ)題.5、C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.6、C【解析】

由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.7、C【解析】

利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因?yàn)樗运运运运援?dāng)時(shí),為直角三角形;當(dāng)時(shí)即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點(diǎn)睛】本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.8、A【解析】

根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域?yàn)椋愠闪?,排除,,?dāng)時(shí),,當(dāng),,排除,故選:.【點(diǎn)睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時(shí),故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點(diǎn)睛】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.10、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.11、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.12、D【解析】

利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】

先求出的展開式的通項(xiàng),再求出即得解.【詳解】設(shè)的展開式的通項(xiàng)為,令r=3,則,令r=2,則,所以展開式中含x3y3的項(xiàng)為.所以x3y3的系數(shù)為40.故答案為:40【點(diǎn)睛】本題主要考查二項(xiàng)式定理求指定項(xiàng)的系數(shù),意在考查學(xué)生對這些知識的理解掌握水平.14、18【解析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當(dāng)時(shí),,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時(shí),,函數(shù)開口向上,對稱軸為,因?yàn)樵趨^(qū)間上單調(diào)遞減,則,因?yàn)?則,整理得,又因?yàn)?則.所以即,所以當(dāng)且僅當(dāng)時(shí)等號成立.綜上所述,的最大值為18.故答案為:18【點(diǎn)睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.15、【解析】

由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點(diǎn),∴,,∴,故答案為:.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎(chǔ)題.16、【解析】

求出點(diǎn)坐標(biāo),由于直線與直線垂直,得出直線的斜率為,再由點(diǎn)斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)角,再繼續(xù)旋轉(zhuǎn)角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:【點(diǎn)睛】本題主要考查了求直線的方程,涉及了求直線的交點(diǎn)以及直線與直線的位置關(guān)系,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析,40元(2)6000元【解析】

(1)甲、乙兩人所付的健身費(fèi)用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費(fèi)用之和共有9種情況,分情況計(jì)算即可(2)根據(jù)(1)結(jié)果求均值.【詳解】解:(1)由題設(shè)知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數(shù)學(xué)期望(元)(2)此次促銷活動后健身館每天的營業(yè)額預(yù)計(jì)為:(元)【點(diǎn)睛】考查離散型隨機(jī)變量的分布列及其期望的求法,中檔題.18、(1),(2)【解析】

(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因?yàn)槌傻炔顢?shù)列,所以而,.19、(1)見解析;(2)【解析】

(1)因?yàn)?,所以,所以,所以?shù)列是等差數(shù)列,設(shè)數(shù)列的公差為,由可得,因?yàn)槌傻缺葦?shù)列,所以,所以,所以,因?yàn)?,所以,解得(舍去)或,所以,所以.?)由(1)知,,所以,所以.20、(1),;(2)【解析】

(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標(biāo)方程;(2)寫出點(diǎn)M和點(diǎn)N的極坐標(biāo),根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標(biāo)方程為,,極坐標(biāo)方程.(2)由題可知,,當(dāng)時(shí),.【點(diǎn)睛】本題考查了參數(shù)方程、普通方程和極坐標(biāo)方程的互化問題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.21、(1).(2)見解析【解析】

(1)由絕對值三解不等式可得,所以當(dāng)時(shí),,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當(dāng)時(shí),,解得.(2)∵,∴,∴,當(dāng)且僅當(dāng),即,時(shí),等號成立.∴.【點(diǎn)睛】本題主要考查絕對值三角不等式及基本不等式的簡單應(yīng)用,屬于中檔題.22、(1);(2).【解析】

若補(bǔ)充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補(bǔ)充兩個條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論