下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
數(shù)學(xué):3.2《復(fù)數(shù)的4則運算》素材(新人教A版選修2-2)數(shù)學(xué):3.2《復(fù)數(shù)的4則運算》素材(新人教A版選修2-2)數(shù)學(xué):3.2《復(fù)數(shù)的4則運算》素材(新人教A版選修2-2)復(fù)數(shù)中的幾個結(jié)論及共應(yīng)用數(shù)系由實數(shù)系擴大到復(fù)數(shù)系以后,實數(shù)系中哪些公式和法例仍舊建立,哪些不建立,又有哪些新的公式和法例,是同學(xué)們不易弄清的問題,以下給出幾則在復(fù)數(shù)系中仍舊建立的公式和法例及幾個新的公式和法例,并簡單舉例說明其應(yīng)用.一、中點公式:A點對應(yīng)的復(fù)數(shù)為a1b1i(a1R,b1R),B點對應(yīng)的復(fù)數(shù)為a2b2i(a2即a1a22例113i,i,2
R,b2R),C點為A,B兩點的中點,則C點對應(yīng)的復(fù)數(shù)為a1b1ia2b2i,2b1b2i.2四邊形ABCD是復(fù)平面內(nèi)的平行四邊形,A,B,C三點對應(yīng)的復(fù)數(shù)分別為i,求D點對應(yīng)的復(fù)數(shù).解:由已知應(yīng)用中點公式可得A,C的中點對應(yīng)的復(fù)數(shù)為3,因此D點對應(yīng)的復(fù)數(shù)2i23[22(1)]i35i.為22二、根與系數(shù)的關(guān)系:若實系數(shù)方程ax2bxc0(a0)的兩復(fù)根為a1b1i,a2b2i,則有a1bi1a2b2ib,(a1bi1)·(a2b2i)c.a(chǎn)a2bxc0(a0)有兩虛數(shù)根,則這兩個虛數(shù)根共軛.推論:若實系數(shù)方程ax例2方程x2axb0的一個根為1i,務(wù)實數(shù)a,b的值.解:已知實系數(shù)方程的一個根為1i,由推論知方程的另一根為1i,由根與系數(shù)的關(guān)系可知a(1i1i)2,b(1i)·(1i)2.三、相關(guān)運算性質(zhì):①z為實數(shù)zzz20z22,zz為純虛數(shù)z20zz0(z0);②對隨意復(fù)數(shù)有zz;③zz2zz;④z·z2z·z2,特11211別地有z2(z)2;⑤z1z1;⑥2z·z.zz2z2例3設(shè)z1,且zi,求證z為實數(shù).12z證明:由條件可知z0,則z·z21,z11zzzzz1z因此,zzz1z21z21z21(z)21(z1)2z2,1因此z為實數(shù).12z四、兩則幾何意義:①zz0的幾何意義為點z到點z0的距離;②zz0r(r0)中z所對應(yīng)的點為以復(fù)數(shù)z0所對應(yīng)的點為圓心,半徑為r的圓上的點.例4若zC,且z22i1,則z22i的最小值為.解:z22i1即z(22i)1,z對應(yīng)的點為到點(2,2)的距離為定值1的全部的點,即以(2,2)為圓心,1為半徑的圓O上的點.z22i即z(22i),為圓O上的點與點(2,2)之間的距離減去圓O的半徑,可得結(jié)果為3.復(fù)數(shù)與平行四邊形家族菱形、矩形、正方形等特別的平面幾何圖形與某些復(fù)數(shù)式之間存在某種聯(lián)系及互相轉(zhuǎn)變的門路.在求解復(fù)數(shù)問題時,要擅長觀察條件中給定的或許是經(jīng)過推理所得的復(fù)數(shù)形式的構(gòu)造特點,常常能獲取簡捷明快、生動開朗的解決方法.下邊略舉幾例,以供參照.一、復(fù)數(shù)式與長方形的轉(zhuǎn)變例1復(fù)數(shù)z1,z2知足z1z20,z1z2z1z2,證明:z120.z22z1,z2在復(fù)平面上對應(yīng)的點為Z1,Z2,由z1z2z1z2uuuur分析:設(shè)復(fù)數(shù)知,以O(shè)Z1,uuuuruuuuruuuur,故可設(shè)z1OZ2為鄰邊的平行四邊形為矩形,∴OZ1OZ2ki(kR,k0),因此z2z1222k20.z2k12例2已知復(fù)數(shù)z1,1271,且z1z2z1與z1z2的z2值.分析:設(shè)復(fù)數(shù)z1,z2在復(fù)平面上對應(yīng)的點為Z1,Z2,因為(71)2(71)242,故2z22z12z1z2,uuuuruuuuruuuuruuuur故以O(shè)Z1,OZ2為鄰邊的平行四邊形是矩形,進而OZ1OZ2,則z171i47i;z1z2z1z24.z2713二、復(fù)數(shù)式與正方形的轉(zhuǎn)變例3已知復(fù)數(shù)z1,z2z1z21122122知足,且,求證:.證明:設(shè)復(fù)數(shù)z1,z2在復(fù)平面上對應(yīng)的點為Z1,Z2,由條件知z1z22z12z2,uuuuruuuur形為正方形,而z1z2在復(fù)平面上對應(yīng)的向量為正以O(shè)Z1,OZ2為鄰邊的平行四邊方形的一條對角線,因此z1z22.評論:復(fù)數(shù)與向量的對應(yīng)關(guān)系給予了復(fù)數(shù)的幾何意義,復(fù)數(shù)加法幾何意義的運用是此題觀察的要點.三、復(fù)數(shù)式與菱形的轉(zhuǎn)變例4已知z1,z2C,z1z21,z1z23,求z1z2.分析:設(shè)復(fù)數(shù)z1,z2,z1z2在復(fù)平面上對應(yīng)的點為Z1,Z2,Z3,由z1z21知,以uuuuruuuura2,∴za,考慮到za時,OZ1,OZ2為鄰邊的平行四邊形是菱形,∴z2z2a20;zai時,z2a2z2a2(a0)為純虛數(shù)的充要條件是za,2222無心義,故使22zaz
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級歷史下冊 第二學(xué)習(xí)主題 社會主義道路的探索 第5課 艱苦創(chuàng)業(yè)的民族脊梁教案 川教版
- 2024學(xué)年九年級英語上冊 Unit 2 Great People Lesson 7 What Is the Meaning of Life教案(新版)冀教版
- 2024年春八年級生物下冊 第7單元 第1章 第1節(jié) 植物的生殖教案 (新版)新人教版
- 2024年五年級數(shù)學(xué)下冊 五 分數(shù)除法第1課時 分數(shù)除法(一)教案 北師大版
- 八年級生物上冊 第四單元 第一章 第一節(jié)花的結(jié)構(gòu)和類型教案 (新版)濟南版
- 2024-2025學(xué)年高中歷史 第三單元 第二次世界大戰(zhàn) 探究活動課一 世界大戰(zhàn)的啟示-戰(zhàn)爭給人類帶來了什么(2)教學(xué)教案 新人教版選修3
- 總經(jīng)理聘用合同(2篇)
- 銀行免還款合同(2篇)
- 麻雀人教版課件
- 第13課《唐詩五首·黃鶴樓》八年級語文上冊精講同步課堂(統(tǒng)編版)
- 2024年度智能家居解決方案合同
- 2024-2030年中國汽車再制造行業(yè)產(chǎn)銷量預(yù)測及投資戰(zhàn)略研究報告
- 消防安全知識
- 小學(xué)信息科技《數(shù)據(jù)與編碼-探索生活中的“編碼”》教學(xué)設(shè)計
- 2024年云網(wǎng)安全應(yīng)知應(yīng)會考試題庫
- 小學(xué)道德與法治《中華民族一家親》完整版課件部編版
- 《電力建設(shè)施工技術(shù)規(guī)范 第2部分:鍋爐機組》DLT 5190.2
- DL-T 5190.1-2022 電力建設(shè)施工技術(shù)規(guī)范 第1部分:土建結(jié)構(gòu)工程(附條文說明)
- 經(jīng)緯度數(shù)轉(zhuǎn)換工具
- 一年級家長進課堂電的知識(課堂PPT)
- 信用社(銀行)員工內(nèi)部等級管理及工資套改辦法
評論
0/150
提交評論