2023屆山東省煙臺龍口市中考沖刺卷數(shù)學(xué)試題含解析_第1頁
2023屆山東省煙臺龍口市中考沖刺卷數(shù)學(xué)試題含解析_第2頁
2023屆山東省煙臺龍口市中考沖刺卷數(shù)學(xué)試題含解析_第3頁
2023屆山東省煙臺龍口市中考沖刺卷數(shù)學(xué)試題含解析_第4頁
2023屆山東省煙臺龍口市中考沖刺卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π2.我國古代數(shù)學(xué)著作《九章算術(shù)》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設(shè)有x人合買,這件物品y元,則根據(jù)題意列出的二元一次方程組為()A. B. C. D.3.八邊形的內(nèi)角和為()A.180° B.360° C.1080° D.1440°4.如圖,以正方形ABCD的邊CD為邊向正方形ABCD外作等邊△CDE,AC與BE交于點F,則∠AFE的度數(shù)是()A.135° B.120° C.60° D.45°5.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤46.從一個邊長為3cm的大立方體挖去一個邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.7.若實數(shù)a,b滿足|a|>|b|,則與實數(shù)a,b對應(yīng)的點在數(shù)軸上的位置可以是()A. B. C. D.8.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米9.如圖,在矩形ABCD中,O為AC中點,EF過O點且EF⊥AC分別交DC于F,交AB于點E,點G是AE中點且∠AOG=30°,則下列結(jié)論正確的個數(shù)為(

)DC=3OG;(2)OG=BC;(3)△OGE是等邊三角形;(4).A.1 B.2 C.3 D.410.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°二、填空題(本大題共6個小題,每小題3分,共18分)11.若a,b互為相反數(shù),則a2﹣b2=_____.12.我國古代《易經(jīng)》一書中記載,遠(yuǎn)古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個.13.如圖,將一塊含有30°角的直角三角板的兩個頂點疊放在長方形的兩條對邊上,如果∠1=27°,那么∠2=______°14.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數(shù)為____.15.如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB延長線于點F,則EF的長為__________.16.為增強學(xué)生身體素質(zhì),提高學(xué)生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應(yīng)邀請多少個球隊參賽?設(shè)邀請x個球隊參賽,根據(jù)題意,可列方程為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE與BD相交于點O.求證:EC=ED.18.(8分)從化市某中學(xué)初三(1)班數(shù)學(xué)興趣小組為了解全校800名初三學(xué)生的“初中畢業(yè)選擇升學(xué)和就業(yè)”情況,特對本班50名同學(xué)們進(jìn)行調(diào)查,根據(jù)全班同學(xué)提出的3個主要觀點:A高中,B中技,C就業(yè),進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項觀點);并制成了扇形統(tǒng)計圖(如圖).請回答以下問題:(1)該班學(xué)生選擇觀點的人數(shù)最多,共有人,在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是度.(2)利用樣本估計該校初三學(xué)生選擇“中技”觀點的人數(shù).(3)已知該班只有2位女同學(xué)選擇“就業(yè)”觀點,如果班主任從該觀點中,隨機選取2位同學(xué)進(jìn)行調(diào)查,那么恰好選到這2位女同學(xué)的概率是多少?(用樹形圖或列表法分析解答).19.(8分)解不等式組,并把解集在數(shù)軸上表示出來.20.(8分)如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高(1)△ACD與△ABC相似嗎?為什么?(2)AC2=AB?AD成立嗎?為什么?21.(8分)全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個男孩,準(zhǔn)備再生一個孩子,則第二個孩子是女孩的概率是;乙家庭沒有孩子,準(zhǔn)備生兩個孩子,求至少有一個孩子是女孩的概率.22.(10分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.23.(12分)如圖,將等腰直角三角形紙片ABC對折,折痕為CD.展平后,再將點B折疊在邊AC上(不與A、C重合),折痕為EF,點B在AC上的對應(yīng)點為M,設(shè)CD與EM交于點P,連接PF.已知BC=1.(1)若M為AC的中點,求CF的長;(2)隨著點M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請說明理由;②求△PFM的周長的取值范圍.24.為響應(yīng)市政府“創(chuàng)建國家森林城市”的號召,某小區(qū)計劃購進(jìn)A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.若購進(jìn)A、B兩種樹苗剛好用去1220元,問購進(jìn)A、B兩種樹苗各多少棵?若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質(zhì)、勾股定理的應(yīng)用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關(guān)鍵.2、D【解析】

根據(jù)題意可以找出題目中的等量關(guān)系,列出相應(yīng)的方程組,從而可以解答本題.【詳解】由題意可得:,故選D.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.3、C【解析】試題分析:根據(jù)n邊形的內(nèi)角和公式(n-2)×180o可得八邊形的內(nèi)角和為(8-2)×180o=1080o,故答案選C.考點:n邊形的內(nèi)角和公式.4、B【解析】

易得△ABF與△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度數(shù)即可.【詳解】∵四邊形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故選B.【點睛】此題考查正方形的性質(zhì),熟練掌握正方形及等邊三角形的性質(zhì),會運用其性質(zhì)進(jìn)行一些簡單的轉(zhuǎn)化.5、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.6、C【解析】

左視圖就是從物體的左邊往右邊看.小正方形應(yīng)該在右上角,故B錯誤,看不到的線要用虛線,故A錯誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應(yīng)該是大正方形,故D錯誤,所以C正確.故此題選C.7、D【解析】

根據(jù)絕對值的意義即可解答.【詳解】由|a|>|b|,得a與原點的距離比b與原點的距離遠(yuǎn),只有選項D符合,故選D.【點睛】本題考查了實數(shù)與數(shù)軸,熟練運用絕對值的意義是解題關(guān)鍵.8、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.9、C【解析】∵EF⊥AC,點G是AE中點,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等邊三角形,故(3)正確;設(shè)AE=2a,則OE=OG=a,由勾股定理得,AO=,∵O為AC中點,∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四邊形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正確;∵OG=a,BC=,∴OG≠BC,故(2)錯誤;∵S△AOE=a?=,SABCD=3a?=32,∴S△AOE=SABCD,故(4)正確;綜上所述,結(jié)論正確是(1)(3)(4)共3個,故選C.【點睛】本題考查了矩形的性質(zhì),等邊三角形的判定、勾股定理的應(yīng)用等,正確地識圖,結(jié)合已知找到有用的條件是解答本題的關(guān)鍵.10、D【解析】

根據(jù)兩直線平行,內(nèi)錯角相等計算即可.【詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點睛】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯角相等是解答本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】【分析】直接利用平方差公式分解因式進(jìn)而結(jié)合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關(guān)鍵.12、1【解析】分析:類比于現(xiàn)在我們的十進(jìn)制“滿十進(jìn)一”,可以表示滿六進(jìn)一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點睛:本題是以古代“結(jié)繩計數(shù)”為背景,按滿六進(jìn)一計數(shù),運用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識,另一方面也考查了學(xué)生的思維能力.13、57°.【解析】

根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】由平行線性質(zhì)及外角定理,可得∠2=∠1+30°=27°+30°=57°.【點睛】本題考查平行線的性質(zhì)及三角形外角的性質(zhì).14、22°【解析】

由AE∥BD,根據(jù)平行線的性質(zhì)求得∠CBD的度數(shù),再由對頂角相等求得∠CDB的度數(shù),繼而利用三角形的內(nèi)角和等于180°求得∠C的度數(shù).【詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【點睛】本題考查了平行線的性質(zhì),對頂角相等及三角形內(nèi)角和定理.熟練運用相關(guān)知識是解決問題的關(guān)鍵.15、6【解析】

利用正方形的性質(zhì)和勾股定理可得AC的長,由角平分線的性質(zhì)和平行線的性質(zhì)可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長.【詳解】解:∵四邊形ABCD為正方形,且邊長為3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=616、x(x﹣1)=1【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點睛】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.三、解答題(共8題,共72分)17、見解析【解析】

由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【點睛】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對應(yīng)邊相等、對應(yīng)角相等)是解題的關(guān)鍵.18、(4)A高中觀點.4.446;(4)456人;(4)16【解析】試題分析:(4)全班人數(shù)乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數(shù),用460°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區(qū)域的圓心角的度數(shù);(4)用全校初三年級學(xué)生數(shù)乘以選擇“B中技”觀點的百分比即可估計該校初三學(xué)生選擇“中技”觀點的人數(shù);(4)先計算出該班選擇“就業(yè)”觀點的人數(shù)為4人,則可判斷有4位女同學(xué)和4位男生選擇“就業(yè)”觀點,再列表展示44種等可能的結(jié)果數(shù),找出出現(xiàn)4女的結(jié)果數(shù),然后根據(jù)概率公式求解.試題解析:(4)該班學(xué)生選擇A高中觀點的人數(shù)最多,共有60%×50=4(人),在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計該校初三學(xué)生選擇“中技”觀點的人數(shù)約是456人;(4)該班選擇“就業(yè)”觀點的人數(shù)=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學(xué)和4位男生選擇“就業(yè)”觀點,列表如下:共有44種等可能的結(jié)果數(shù),其中出現(xiàn)4女的情況共有4種.所以恰好選到4位女同學(xué)的概率=212考點:4.列表法與樹狀圖法;4.用樣本估計總體;4.扇形統(tǒng)計圖.19、﹣1≤x<1.【解析】

求不等式組的解集首先要分別解出兩個不等式的解集,然后利用口訣“同大取大,同小取小,大小小大中間找,大大小小找不到(”確定不等式組解集的公共部分.【詳解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式組的解集是﹣1≤x<1.不等式組的解集在數(shù)軸上表示如下:20、(1)△ACD與△ABC相似;(2)AC2=AB?AD成立.【解析】

(1)求出∠ADC=∠ACB=90°,根據(jù)相似三角形的判定推出即可;(2)根據(jù)相似三角形的性質(zhì)得出比例式,再進(jìn)行變形即可.【詳解】解:(1)△ACD與△ABC相似,理由是:∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB?AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB?AD.【點睛】本題考查了相似三角形的性質(zhì)和判定,能根據(jù)相似三角形的判定定理推出△ACD∽△ABC是解此題的關(guān)鍵.21、(1);(2)【解析】

(1)根據(jù)可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后確定至少有一個女孩的可能性,然后可求概率.【詳解】解:(1)(1)第二個孩子是女孩的概率=;故答案為;(2)畫樹狀圖為:

共有4種等可能的結(jié)果數(shù),其中至少有一個孩子是女孩的結(jié)果數(shù)為3,

所以至少有一個孩子是女孩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.22、(2)見解析;(2)2+.【解析】

(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;

(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質(zhì)、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.23、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由見解析;②△PFM的周長滿足:2+2<(1+)y<1+1.【解析】

(1)由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構(gòu)建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長即可解決問題;②設(shè)FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長=(1+)y,由2<y<1,可得結(jié)論.【詳解】(1)∵M(jìn)為AC的中點,∴CM=AC=BC=2,由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由如下:由折疊的性質(zhì)可知,∠PMF=∠B=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論