因式分解教案合集六篇_第1頁
因式分解教案合集六篇_第2頁
因式分解教案合集六篇_第3頁
因式分解教案合集六篇_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第因式分解教案合集六篇

㈧、布置作業(yè)

作業(yè)本(1),一課一練

(九)教學(xué)反思:

因式分解教案篇4

一、教材分析

1、教材的地位與作用

“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗,完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

2、教學(xué)目標(biāo)

(1)會推導(dǎo)乘法公式

(2)在應(yīng)用乘法公式進(jìn)行計算的基礎(chǔ)上,感受乘法公式的作用和價值。

(3)會用提公因式法、公式法進(jìn)行因式分解。

(4)了解因式分解的一般步驟。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

3、重點、難點和關(guān)鍵

重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進(jìn)行因式分解。

難點:正確運用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

二、本單元教學(xué)的方法和策略:

1.注重知識形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識,在領(lǐng)悟過程中建構(gòu)體系,從而更好地實現(xiàn)知識體系的更新和知識的正向遷移.

2.知識內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識結(jié)構(gòu)相聯(lián)系,同時兼顧學(xué)生的思維水平和心理特征.

3.讓學(xué)生掌握基本的數(shù)學(xué)事實與數(shù)學(xué)活動經(jīng)驗,減輕不必要的記憶負(fù)擔(dān).

4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會數(shù)學(xué)的應(yīng)用價值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.

三、課時安排:

2.1平方差公式1課時

2.2完全平方公式2課時

2.3用提公因式法進(jìn)行因式分解1課時

2.4用公式法進(jìn)行因式分解2課時

因式分解教案篇5

第十五章整式的乘除與因式分解

根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).

15.1.2整式的加減

(3)x-(1-2x+x2)+(-1-x2)(4)(8x-3x2)-5x-2(3x-2x2)

四、提高練習(xí):

1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?

2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應(yīng)點如圖:

試化簡:│a│-│a+b│+│c-a│+│b+c│

小結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進(jìn)行運算。

作業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

《課堂感悟與探究》

因式分解教案篇6

學(xué)習(xí)目標(biāo)

1、學(xué)會用公式法因式法分解

2、綜合運用提取公式法、公式法分解因式

學(xué)習(xí)重難點重點:

完全平方公式分解因式.

難點:綜合運用兩種公式法因式分解

自學(xué)過程設(shè)計

完全平方公式:

完全平方公式的逆運用:

做一做:

1.(1)16x2-8x+_______=(4x-1)2;

(2)_______+6x+9=(x+3)2;

(3)16x2+_______+9y2=(4x+3y)2;

(4)(a-b)2-2(a-b)+1=(______-1)2.

2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)

3.下列因式分解正確的是()

A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2

C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)2

4.分解因式:(1)x2-22x+121(2)-y2-14y-49(3)(a+b)2+2(a+b)+1

5.計算:20+20222=___________________.

6.若x+y=1,則x2+xy+y2的值是_________________.

想一想

你還有哪些地方不是很懂?請寫出來。

____________________________________________________________________________________預(yù)習(xí)展示一:

1.判別下列各式是不是完全平方式.

2、把下列各式因式分解:

(1)-x2+4xy-4y2

(2)3ax2+6axy+3ay2

(3)(2x+y)2-6(2x+y)+9

應(yīng)用探究:

1、用簡便方法計算

49.92+9.98+0.12

拓展提高:

(1)(a2+b2)(a2+b210)+25=0求a2+b2

(2)4x2+y2-4xy-12x+6y+9=0

求x、y關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論