教案數學初中(匯總10篇)_第1頁
教案數學初中(匯總10篇)_第2頁
教案數學初中(匯總10篇)_第3頁
教案數學初中(匯總10篇)_第4頁
教案數學初中(匯總10篇)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1/1教案數學初中(匯總10篇)

教案數學初中第1篇一、教材分析:

本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章第3節(jié)平行線的性質,它是平行線及直線平行的繼續(xù),是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.

二、教學目標:

知識與技能:掌握平行線的性質,能應用性質解決相關問題.

數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.

解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神.

情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.

三、教學重、難點:

重點:平行線的性質

難點:“性質1”的探究過程

四、教學方法:

“引導發(fā)現法”與“動像探索法”

五、教具、學具:

教具:多媒體課件

學具:三角板、量角器.

六、教學媒體:大屏幕、實物投影

七、教學過程:

(一)創(chuàng)設情境,設疑激思:

1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.

2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?

學生活動:

思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;

教師:首先肯定學生的回答,然后提出問題.

問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?

引出課題——平行線的性質.

(二)數形結合,探究性質

1.畫圖探究,歸納猜想

任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).

問題一:指出圖中的同位角,并度量這些角,把結果填入下表:

第一組

第二組

第三組

第四組

同位角

∠1

∠5

角的度數

數量關系

學生活動:畫圖——度量——填表——猜想

結論:兩直線平行,同位角相等.

問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?

學生:探究、討論,最后得出結論:仍然成立.

2.教師用《幾何畫板》課件驗證猜想

3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)

(三)引申思考,培養(yǎng)創(chuàng)新

問題三:請判斷內錯角、同旁內角各有什么關系?

學生活動:獨立探究——小組討論——成果展示.

教師活動:引導學生說理.

因為a‖b因為a‖b

所以∠1=∠2所以∠1=∠2

又∠1=∠3又∠1+∠4=180°

所以∠2=∠3所以∠2+∠4=180°

語言敘述:

性質2兩條直線被第三條直線所截,內錯角相等.

(兩直線平行,內錯角相等)

性質3兩條直線被第三條直線所截,同旁內角互補.

(兩直線平行,同旁內角互補)

(四)實際應用,優(yōu)勢互補

1.(搶答)

(1)如圖,平行線AB、CD被直線AE所截

①若∠1=110°,則∠2=°.理由:.

②若∠1=110°,則∠3=°.理由:.

③若∠1=110°,則∠4=°.理由:.

(2)如圖,由AB‖CD,可得()

(A)∠1=∠2(B)∠2=∠3

(C)∠1=∠4(D)∠3=∠4

(3)如圖,AB‖CD‖EF,

那么∠BAC+∠ACE+∠CEF=()

(A)180°(B)270°(C)360°(D)540°

(4)誰問誰答:如圖,直線a‖b,

如:∠1=54°時,∠2=.

學生提問,并找出回答問題的同學.

2.(討論解答)

如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,

∠B=115°,求梯形另外兩角分別是多少度?

(五)概括存儲(小結)

1.平行線的性質1、2、3;

2.用“運動”的觀點觀察數學問題;

3.用數形結合的方法來解決問題.

(六)作業(yè)第69頁2、4、7.

八、教學反思:

①教的轉變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發(fā)現結論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關系,激發(fā)學生自覺地探究數學問題,體驗發(fā)現的樂趣.

②學的轉變:學生的角色從學會轉變?yōu)闀W.本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.

③課堂氛圍的轉變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現的價值.

教案數學初中第2篇一、教學目標:

1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

2、能力目標:

①在實踐操作過程中,逐步探索圖形之間的平移關系;

②對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。

二、重點與難點:

重點:圖形連續(xù)變化的特點;

難點:圖形的劃分。

三、教學方法:

講練結合。使用多媒體課件輔助教學。

四、教具準備:

多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

五、教學設計:

創(chuàng)設情景,探究新知:

(演示課件):教材上小狗的圖案。提問:

(1)這個圖案有什么特點?

(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

小組討論,派代表回答。(答案可以多種)

讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。

看磁性黑板,展示教材64頁圖3—9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

小組討論,派代表到臺上給大家講解。

氣氛要熱烈,充分調動學生的積極性,發(fā)掘他們的想象力。

暢所欲言,互相補充。

課堂小結:

在教師的引導下學生總結本節(jié)課的主要內容,并啟發(fā)學生在我們周圍尋找平移的例子。

課堂練習:

小組討論。

小組討論完成。

例子一定要和大家接觸緊密、典型。

答案不惟一,對于每種答案,教師都要給予充分的肯定。

六、教學反思:

本節(jié)的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。

教案數學初中第3篇[教學目標]

1、體會并了解反比例函數的圖象的意義

2、能列表、描點、連線法畫出反比例函數的圖象

3、通過反比例函數的圖象的分析,探索并掌握反比例函數的圖象的性質

[教學重點和難點]

本節(jié)教學的重點是反比例函數的圖象及圖象的性質

由于反比例函數的圖象分兩支,給畫圖帶來了復雜性是本節(jié)教學的難點

[教學過程]

1、情境創(chuàng)設

可以從復習一次函數的圖象開始:你還記得一次函數的圖象嗎?在回憶與交流中,進一步認識函數圖象的直觀有助于理解函數的性質。轉而導人關注新的函數——反比例函數的圖象研究:反比例函數的圖象又會是什么樣子呢?

2、探索活動

探索活動1反比例函數y?

由于反比例函數y?

要分幾個層次來探求:

(1)可以先估計——例如:位置(圖象所在象限、圖象與坐標軸的交點等)、趨勢(上升、下降等);

(2)方法與步驟——利用描點作圖;

列表:取自變量x的哪些值?——x是不為零的任何實數,所以不能取x的值的為零,但仍可以以零為基準,左右均勻,對稱地取值。

描點:依據什么(數據、方法)找點?

連線:怎樣連線?——可在各個象限內按照自變量從小到大的順序用兩條光滑的曲線把所描的點連接起來。

探索活動2反比例函數y??2的圖象.x2的圖象是曲線型的,且分成兩支.對此,學生第一次接觸有一定的難度,因此需x2的圖象.x

可以引導學生采用多種方式進行自主探索活動:

2的圖象的方式與步驟進行自主探索其圖象;x

222(2)可以通過探索函數y?與y??之間的關系,畫出y??的圖象.xxx

22探索活動3反比例函數y??與y?的圖象有什么共同特征?xx(1)可以用畫反比例函數y?

引導學生從通過與一次函數的圖象的對比感受反比例函數圖象“曲線”及“兩支”的特征.(即雙曲線)反比例函數y?

k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當k?0時,圖象在第一、第x

教案數學初中第4篇教學目標

1.了解公式的意義,使學生能用公式解決簡單的實際問題;

2.初步培養(yǎng)學生觀察、分析及概括的能力;

3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

教學建議

一、教學重點、難點

重點:通過具體例子了解公式、應用公式。

難點:從實際問題中發(fā)現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

二、重點、難點分析

人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發(fā),用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2.在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規(guī)律,依據規(guī)律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

教案數學初中第5篇教學目標:

1、理解切線的判定定理,并學會運用。

2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

教學重點:切線的判定定理和切線判定的方法。

教學難點:切線判定定理中所闡述的圓的切線的兩大要素:一是經過半徑外端;二是直線垂直于這條半徑;學生開始時掌握不好并極容易忽視一.

教學過程:

一、復習提問

【教師】問題1.怎樣過直線l上一點P作已知直線的垂線?

問題2.直線和圓有幾種位置關系?

問題3.如何判定直線l是⊙O的切線?

啟發(fā):(1)直線l和⊙O的公共點有幾個?

(2)圓心O到直線L的距離與半徑的數量關系如何?

學生答完后,教師強調(2)是判定直線l是⊙O的切線的常用方法,即:定理:圓心O到直線l的距離OA等于圓的半(如圖1,投影顯示)

再啟發(fā):若把距離OA理解為OA⊥l,OA=r;把點A理解為半徑在圓上的端點,請同學們試將上面定理用新的理解改寫成新的命題,此命題就是這節(jié)課要學的“切線的判定定理”(板書課題)

二、引入新課內容

【學生】命題:經過半徑的在圓上的端點且垂直于半徑的直線是圓的切線。

證明定理:啟發(fā)學生分清命題的題設和結論,寫出已知、求證,分析證明思路,閱讀課本P60。

定理:經過半徑外端并且垂直于這條半徑的直線是圓的切線.

定理的證明:已知:直線l經過半徑OA的外端點A,直線l⊥OA,

求證:直線l是⊙O的切線

證明:略

定理的符號語言:∵直線l⊥OA,直線l經過半徑OA的外端A

∴直線l為⊙O的切線。

是非題:

(1)垂直于圓的半徑的直線一定是這個圓的切線。()

(2)過圓的半徑的外端的直線一定是這個圓的切線。()

三、例題講解

例1、已知:直線AB經過⊙O上的點C,并且OA=OB,CA=CB。

求證:直線AB是⊙O的切線。

引導學生分析:由于AB過⊙O上的點C,所以連結OC,只要證明AB⊥OC即可。

證明:連結OC.

∵OA=OB,CA=CB,

∴AB⊥OC

又∵直線AB經過半徑OC的外端C

∴直線AB是⊙O的切線。

練習1、如圖,已知⊙O的半徑為R,直線AB經過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

練習2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。

求證:CD是⊙O的切線。

例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。

求證:DE是⊙O的切線。

思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?

四、小結

1.切線的判定定理。

2.判定一條直線是圓的切線的方法:

①定義:直線和圓有唯一公共點。

②數量關系:直線到圓心的距離等于該圓半徑(即d=r)。[

③切線的判定定理:經過半徑外端且與這條半徑垂直的直線是圓的切線。

3.證明一條直線是圓的切線的輔助線和證法規(guī)律。

凡是已知公共點(如:直線經過圓上的點;直線和圓有一個公共點;)往往是"連結"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。

五、布置作業(yè):略

《切線的判定》教后體會

本課例《切線的判定》作為市考試院調研課型兼區(qū)級研討課,我以“教師為引導,學生為主體”的二期課改的理念出發(fā),通過學生自我活動得到數學結論作為教學重點,呈現學生真實的思維過程為教學宗旨,進行教學設計,目的在于讓學生對知識有一個本質的、有效的理解。本節(jié)課切實反映了平時的教學情況,為前來調研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:

成功之處:

一、教材的二度設計順應了學生的認知規(guī)律

這批學生習慣于單一知識點的學習,即得出一個知識點,必須由淺入深反復進行練習,鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結論,導致錯誤,久之便會失去學習數學的興趣和信心。本教時課本上將切線判定定理和性質定理的導出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學生往往會因第一時間得不到及時的鞏固,對定理本質的東西不能很好地理解,在運用時抓不住關鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學生更是因知識點多不知所措,在云里霧里。二度設計將切線的判定方法作為第一課時,切線的性質定理以及兩個定理的綜合運用作為第二課時,這樣的設計即是對前面所學的“直線與圓相切的判定方法”的復習,又是對后面學習綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學呈現了一個循序漸進、溫過知新的過程。從學生的反饋情況判斷,教學效果較為理想。

二、重視學生數感的培養(yǎng)呼應了課改的理念

數感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學習就會輕松。擁有數感,不僅會對數學知識反應靈敏,更會在生活中不知不覺運用數學思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導,學生發(fā)現完成的,而三個習題則完全放手讓學生去思考完成,不乏有不會做和做得復雜的學生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學生嘗試總結規(guī)律,也是對學生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學生得出,事實證明,學生有這樣的理解、概括和表達能力。通過思考得出正確的結論,這個結論往往是刻骨銘心的,長此以往,對數和形的感覺會越來越好。

不足之處:

一、這節(jié)課沒有“高潮”,沒有讓學生特別興奮激起求知欲的情境,整個教學過程是在一個平靜、和諧的氛圍中完成的。

二、課的引入太直截了當,脫離不了應試教學的味道。

三、教學風格的定勢使所授知識不能很合理地與生活實際相聯系,一定程度上阻礙了學生解決實際問題能力的發(fā)展。

通過本節(jié)課的教學,我深刻感悟到在教學實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學形狀,適應現代教育,適應現代學生。課堂教學中,敢于實驗,舍得放手,盡量培養(yǎng)學生主體意識,問題讓學生自己去揭示,方法讓學生自己去探索,規(guī)律讓學生自己去發(fā)現,知識讓學生自己去獲得,教師只提供給學生現實情境、充足的思考時間和活動空間,給學生表現自我的機會和成功的體驗,培養(yǎng)學生的自我意識,發(fā)揮學生的主體作用,來真正實現《數學課程標準》中提出的“學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者”這一教學理念。

教案數學初中第6篇把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

一、教材內容分析

本節(jié)課是數學人教版七年級上冊第三章第二節(jié)第二小節(jié)的內容。這是一節(jié)“概念加例題型”課,此種課型中的學習內容一部分是概念,一部分是運用前面的概念解決實際問題的例題。本節(jié)課主要內容是利用移項解一元一次方程。是學生學習解一元一次方程的基礎,這一部分內容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎。這類課一般采用“導學導教,當堂訓練”的方式進行,教師指導學生學習的重點一般不放在概念上,要特別留意學生運用概念解題或做與例題類似的習題時,對概念的理解是否到位。

二、教學目標:

1、知識與技能:

(1)找相等關系列一元一次方程;

(2)用移項解一元一次方程。

(3)掌握移項變號的基本原則

2、過程與方法:經歷運用方程解決實際問題的過程,發(fā)展抽象、概括、分析問題和解決問題的能力,認識用方程解決實際問題的關鍵是建立相等關系。

3、情感、態(tài)度:通過具體情境引入新問題,在移項法則探究的過程中,培養(yǎng)學生合作意識,滲透化歸的思想。

三、學情分析

針對七年級學生學習熱情高,但觀察、分析、概括能力較弱的特點,本節(jié)從實際問題入手,讓學生通過自己思考、動手,激發(fā)學生的求知欲,提高學生學習的興趣與積極性。在課堂教學中,學生主要采取自學、討論、思考、合作交流的學習方式,使學生真正成為課堂的主人,逐步培養(yǎng)學生觀察、概括、歸納的能力。

四、教學重點:利用移項解一元一次方程。

五、教學難點:移項法則的探究過程。

六、教學過程:

(一)情景引入

引例:請同學們思考這樣一個有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨分別是()

A、3個老頭,4個梨B、4個老頭,3個梨C、5個老頭,6個梨D、7個老頭,8個梨

設計意圖:大部分同學會用算術法(答案代入法)來解答的,而這類問題我們如何用方程來解答呢?激起學生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項

(二)出示學習目標

1、理解移項法,明確移項法的依據,會解形如ax+b=cx+d類型的一元一次方程。

2、會建立方程解決簡單的實際問題。

設計意圖:這兩個目標的達成,也驗證了本節(jié)課學生自學的效果,這也是本節(jié)課的教學重難點。

(三)導教導學

1、出示自學指導

自學教材問題2到例3的內容,思考以下問題:

(1)問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題可作為列方程的依據的等量關系是什么?

(2)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的格式正確解答問題)

2、學生自學

學生根據自學提綱進行獨立學習,教師巡視,對自學速度慢的、自學能力差的、注意力不夠集中的學生給以暗示和幫扶,有利于自學后的成果展示。

3、交流展示(小組合作展示)

(合作交流一)教材問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題哪個相等關系可作為列方程的依據呢?

問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本。這個班有多少學生?

1)設未知數:設這個班有X名學生,根據兩種不同分法這批書的總數就有兩種表示方法,即這批書共有(3X+20)本或(4X-25)本。

2)找相等關系:這批書的總數是一個定值,表示同一個量的兩個不同的式子相等。(板書)

3)根據等量關系列方程:3x+20=4x-25(板書)

【總結提升】解決“分配問題”應用題的列方程的基本要點:

A、找出能貫穿應用題始終的一個不變的量。

B、用兩個不同的式子去表示這個量。

C、由表示這個不變的量的兩個式子相等列出方程。

設計意圖:因為在自學提綱的引領下,每個小組自主學習的效果不同,反饋的意見不同,所以在展示中首先要展示學生對課本例題的理解思路。采取主動自愿的方式,一個小組主講,其它小組補充。

(變式訓練1)某學校組織學生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數

(只設列即可)

(變式訓練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨各多少?

設計意圖:檢查提問學生對“分配問題”應用題掌握的情況,學生回答后教師板書所列方程為后面教學做好鋪墊。學生會帶著“如何解這類方程?”的好奇心過渡到下一個環(huán)節(jié)的學習。

(合作交流二)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟。

(板書)把等式一邊的某項改變符號后,從等式的一邊移到另一邊,這種變形叫做移項。

《解一元一次方程——移項》教學設計(魏玉英)

師:為什么等式(方程)可以這樣變形?依據什么?

(出示)依據等式的基本性質

即:等式兩邊都加上或減去同一個數或同一個整式,所得結果仍是等式、

師:解一元一次方程中“移項”起了什么作用?

(出示)通過移項,使等號左邊僅含未知數的項,等號右邊僅含常數的項,使方程更接近x=a的形式。(與課題對照滲透轉化思想)

(基礎訓練)搶答:判斷下列移項是否正確,如有錯誤,請修改

《解一元一次方程——移項》教學設計(魏玉英)

設計理念:讓各個小組憑著勢力去搶答。這五個習題重點考察學生對移項的掌握是本節(jié)課的重難點,習題分層設計且成梯度分布。

【歸納板書】解“ax+b=cx+d”型的一元一次方程的步驟:

(1)移項;

(2)合并同類項;

(3)系數化為1。

(綜合訓練)解下列方程(任選兩題)

設計理念:第(2)、(3)兩題未知數系數是相同類型的,所以讓學生任選一題即可。通過綜合訓練能讓學生更進一步鞏固用移項和合并同類項去解方程了。

(中考試練)若x=2是關于x的方程2x+3m—1=0的解,則m的值為

設計理念:通過本題的訓練讓學生明確中考在本節(jié)的考點,同時激勵學生在數學知識的學習中要抓住知識的核心和重點。

(四)我總結、我提高:

通過本節(jié)課的學習我收獲了。

設計意圖:通過小組之間互相談收獲的方式進行課堂小結,讓學生相互檢查本節(jié)課的學習效果??梢砸龑W生從本節(jié)課獲得的知識、解題的思想方法、學習的技巧等方面交流意見。

(五)當堂檢測(50分)

1、下列方程變形正確的是()

A、由—2x=6,得x=3

B、由—3=x+2,得x=—3—2

C、由—7x+3=x—3,得(—7+1)x=—3—3

D、由5x=2x+3,得x=—1

2、一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個空位,求汽車和游客各有多少?(只設出未知數和列出方程即可)

3、(20分)已知x=1是關于x的方程3m+8x=m+x的解,求m的值。

(師生活動)學生獨立答題,教師巡回檢查,對先答完的學生進行及時批改,并把得滿分的學生作為小老師對后解答完的學生的檢測進行評定,最后老師進行小結。

(六)實踐活動

請每一位同學用自己的年齡編一道“ax+b=cx+d”型的方程應用題,并解答。先在組內交流,選出組內最有創(chuàng)意的一個記在題卡上,自習在全班進行展示。

設計意圖:

讓學生課后完成,讓學生深深體會到數學來源于生活而又服務于生活,體現了數學知識與實際相結合。

教案數學初中第7篇教學目標:

1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義。

2、過程與方法:通過觀察,歸納一元一次方程的概念。

3、情感與態(tài)度:體驗數學與日常生活密切相關,認識到許多實際問題可以用數學方法解決。

教學重點:歸納一元次方程的概念

教學難點:感受方程作為刻畫現實世界有效模型的意義.

教學過程:

一、情景導入:

我能猜出你們的年齡,相信嗎?

只要任何一個同學回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.

問:你的年齡乘以2加3等于多少?

學生說出結果,教師猜測年齡,并問:你們知道我是怎么做的嗎?

學生討論并回答

二、知識探究:

1、方程的教學(投影演示)

小彬和小明也在進行猜年齡游戲,我們來看一看。

找出這道題中的等量關系,列出方程.

大家觀察,這兩個式子有什么特點。

討論并回答:什么是方程?方程有哪些特點?

2、判斷下列式子是不是方程?

(1)X+2=3(是)(2)X+3Y=6(是)

(3)3M-6(不是)(4)1+2=3(不是)

(5)X+3>5(不是)(6)Y-12=5(是)

三、合作交流

1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)

情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?

你能找出題中的等量關系嗎?怎樣列方程?由此題你們想到了些什么?

情景二:第五次全國人口普查統(tǒng)計數據(20xx年3月28日新華社公布)

截至20xx年11月1日0時,全國每10萬人中具有大學文化程度的人數為3611人,比1990年7月1日0時增長了153.94%

1990年6月底每10萬人中約有多少人具有大學文化程度?情景三:西湖中學的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?

下面是剛才根據幾道情景題所列的方程,分析下列方程有何共同點?

2X–5=21

40+15X=100

X(1+153.94﹪)=3611

2[X+(X+12)]=200

2[Y+(Y–12)]=200

在一個方程中,只含有一個未知數X(元),并且未知數的指數是1(次),這樣的方程叫一元一次方程。

問:大家剛才都已經自己列出了方程,那個同學能夠說一下你是怎樣列出方程的,列方程應該分為那幾步呢?

生:分組討論,回答列方程的步驟(1)找等量關系(2)設未知數(3)列方程

四、隨堂練習

1、投影趣味習題,

2、做一做

下面有兩道題,請選做一題。

(1)、請根據方程2X+3=21自己設計一道有實際背景的應用題。

(2)、發(fā)揮你的想象,用自己的年齡編一道應用題,并列出方程。

五、課堂小節(jié)

1、這節(jié)課你學到了什么?

2、這節(jié)課給你印象最深的是什么?

六、作業(yè):分組布置

數學教案-你今年幾歲了搜集整理

教案數學初中第8篇一、教學目標

1、了解二次根式的意義;

2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

3、掌握二次根式的性質和,并能靈活應用;

4、通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

5、通過二次根式性質和的介紹滲透對稱性、規(guī)律性的數學美。

二、教學重點和難點

重點:

(1)二次根的意義;

(2)二次根式中字母的取值范圍。

難點:確定二次根式中字母的取值范圍。

三、教學方法

啟發(fā)式、講練結合。

四、教學過程

(一)復習提問

1、什么叫平方根、算術平方根?

2、說出下列各式的意義,并計算

(二)引入新課

新課:二次根式

定義:式子叫做二次根式。

對于請同學們討論論應注意的問題,引導學生總結:

(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?

若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

(2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次

根式指的是某種式子的“外在形態(tài)”。請學生舉出幾個二次根式的`例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。

例1當a為實數時,下列各式中哪些是二次根式?

例2x是怎樣的實數時,式子在實數范圍有意義?

解:略。

說明:這個問題實質上是在x是什么數時,x—3是非負數,式子有意義。

例3當字母取何值時,下列各式為二次根式:

分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。

解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。

(2)—3x≥0,x≤0,即x≤0時,是二次根式。

(3),且x≠0,∴x>0,當x>0時,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。

例4下列各式是二次根式,求式子中的字母所滿足的條件:

分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何實數時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。

(4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

教案數學初中第9篇教學目標:

1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;

2、使學生分清常量與變量,并能確定自變量的取值范圍.

3、會求函數值,并體會自變量與函數值間的對應關系.

4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.

5、通過函數的教學使學生體會到事物是相互聯系的.是有規(guī)律地運動變化著的.

教學重點:

了解函數的意義,會求自變量的取值范圍及求函數值.

教學難點:

函數概念的抽象性.

教學過程:

(一)引入新課:

上一節(jié)課我們講了函數的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數.

生活中有很多實例反映了函數關系,你能舉出一個,并指出式中的自變量與函數嗎?

1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數n(個)的關系.

2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數n(個)與單價(a)元的關系.

解:1、y=30n

y是函數,n是自變量

2、n是函數,a是自變量.

(二)講授新課

剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.

例1、求下列函數中自變量x的取值范圍.

(1)(2)

(3)(4)

(5)(6)

分析:在(1)、(2)中,x取任意實數,與都有意義.

(3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.

同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.

第(5)小題,是二次根式,二次根式成立的條件是被開方數大于、等于零.的被開方數是.

同理,第(6)小題也是二次根式,是被開方數,

小結:從上面的例題中可以看出函數的解析式是整數時,自變量可取全體實數;函數的解析式是分式時,自變量的取值應使分母不為零;函數的解析式是二次根式時,自變量的取值應使被開方數大于、等于零.

注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要即可.教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論