高中數(shù)學(xué)第二章《向量一章教學(xué)設(shè)計(jì)》教案人教版必修4_第1頁
高中數(shù)學(xué)第二章《向量一章教學(xué)設(shè)計(jì)》教案人教版必修4_第2頁
高中數(shù)學(xué)第二章《向量一章教學(xué)設(shè)計(jì)》教案人教版必修4_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第二章平面向量教課方案人教A版必修4一教材剖析向量這一看法是由物理學(xué)和工程技術(shù)抽象出來的,是現(xiàn)代數(shù)學(xué)中重要和基本的數(shù)學(xué)看法之一,是交流代數(shù)、幾何與三角函數(shù)的有力工具;反過來,向量的理論和方法,又成為解決物理學(xué)和工程技術(shù)的重要工具,向量之所以實(shí)用,要點(diǎn)是它擁有一套優(yōu)秀的運(yùn)算性質(zhì),經(jīng)過向量可把空間圖形的性質(zhì)轉(zhuǎn)變?yōu)橄蛄康倪\(yùn)算,這樣經(jīng)過向量就能較簡單地研究空間的直線和平面的各樣有關(guān)問題本單元的知識構(gòu)造向量的加、減法向量的運(yùn)算向量的數(shù)乘平面向量向量的內(nèi)積用向量坐標(biāo)表示向量的運(yùn)算兩向量平行、垂直的條件向量長度向量夾角基本公式向量在幾何中應(yīng)用向量分析幾何中應(yīng)用向量平面幾何中應(yīng)用距離公式向量的應(yīng)用力向量向量在物理中應(yīng)用速度向量位移向量2、本章教課內(nèi)容的地位與作用向量是數(shù)學(xué)中重要和基本的看法之一,它既是代數(shù)的對象,又是幾何的對象,作為代數(shù)的對象,向量能夠運(yùn)算,而作為幾何對象,向量有方向,能夠刻畫直線、平面切線等幾何對象;向量有長度,能夠刻畫長度等幾何胸懷問題,向量由方向和大小兩個要素確立,大小反應(yīng)向量數(shù)的特色,方向反應(yīng)向量形的特色,所以向量是集數(shù)與形于一身的數(shù)學(xué)看法,是數(shù)學(xué)中數(shù)形聯(lián)合思想的表現(xiàn),向量也是重要的物理模型,在實(shí)質(zhì)生活中有著寬泛的應(yīng)用,它是高中數(shù)學(xué)的基礎(chǔ),將這章放在三角函數(shù)和三角恒等變換之間,一方面是學(xué)習(xí)向量需要三角函數(shù)作準(zhǔn)備,另一方面是為了利用向量的數(shù)目積推導(dǎo)兩角差的余弦公式。、本章主要包含向量的線性運(yùn)算,向量的分解與向量的坐標(biāo)運(yùn)算,平面向量的數(shù)目積,向量的應(yīng)用四大節(jié)。第一大節(jié)——向量的線性運(yùn)算,經(jīng)過學(xué)生熟習(xí)的位移引入向量的概念,并用有向線段來描繪向量,經(jīng)過例題說明向量源于實(shí)質(zhì)并應(yīng)用于實(shí)質(zhì),在此基礎(chǔ)上引入向量加減法的運(yùn)算法例,幾何意義,運(yùn)算律,向量共線的條件以及軸上向量的坐標(biāo)運(yùn)算。第二大節(jié)——向量的分解與向量的坐標(biāo)運(yùn)算,教材第一介紹了平面向量基本定理,并以此為依照引入向量的正交分解的看法和向量的直角坐標(biāo),給出了向量的加法、減法、數(shù)乘向量的直角坐標(biāo)運(yùn)算,利用坐標(biāo)表示平面向量共線的條件。第三大節(jié)——是平面向量的數(shù)目積,教材先以做功為背景引入向量數(shù)目積的看法,而后研究向量數(shù)目積的看法,而后再把向量數(shù)目積的計(jì)算坐標(biāo)化,經(jīng)過向量的坐標(biāo)運(yùn)算推導(dǎo)直角坐標(biāo)平面上的胸懷公式,包含求向量的長度,距離和夾角公式。第四大節(jié)——是向量的應(yīng)用,介紹了向量在平面幾何、分析幾何以及物理中的應(yīng)用,經(jīng)過本章的學(xué)習(xí),使學(xué)生認(rèn)識向量豐富的實(shí)質(zhì)背景,它的物理背景,幾何背景,這關(guān)于學(xué)生理解向量看法和運(yùn)用向量解決問題意義重要。、本章要點(diǎn)和難點(diǎn)要點(diǎn)——是平面向量的有關(guān)看法的理解以及向量線性運(yùn)算和數(shù)目積運(yùn)算及其應(yīng)用,難點(diǎn)——理解向量加法的定義,減法的方向確立,平行向量、共線向量和相等向量的差別與聯(lián)系,理解平面向量基本定理平面向量分解定理。、其余有關(guān)問題(1)本單元“課標(biāo)”與“綱領(lǐng)”的比較項(xiàng)目

課標(biāo)(

12課時)

綱領(lǐng)(

12課時)次序

必修4——2

第一冊下第五章(一)平面向量的看法向量向量的加法、減法向量的加法、減法內(nèi)向量的數(shù)乘實(shí)數(shù)與向量的積向量共線的條件與軸上向量的坐標(biāo)平面向量的坐標(biāo)表示容運(yùn)算以及線性運(yùn)算性質(zhì)線段的定比分點(diǎn)平面向量基本定理平面向量的數(shù)目積向量的正交分解與直角坐標(biāo)運(yùn)算平面兩點(diǎn)間的距離平面向量的數(shù)目積平移兩個向量的夾角和垂直向量的物理和幾何應(yīng)用(2)本單元變化之處以及特色變化——刪繁就簡,調(diào)整章節(jié),突顯了知識的框架切近生活,重申了知識根源與實(shí)質(zhì)生活又應(yīng)用與生活特色——突出向量的物理背景和幾何背景;重申向量作為解決實(shí)質(zhì)問題和數(shù)學(xué)識題的工具作用依據(jù)數(shù)學(xué)知識的發(fā)展過程與學(xué)生認(rèn)知過程安排教課內(nèi)容經(jīng)過數(shù)及其運(yùn)算的類比,向量法與坐標(biāo)法的類比,成立有關(guān)知識的聯(lián)系,突出思想性二教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論