2022年山東省淄博市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案及部分解析)_第1頁
2022年山東省淄博市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案及部分解析)_第2頁
2022年山東省淄博市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案及部分解析)_第3頁
2022年山東省淄博市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案及部分解析)_第4頁
2022年山東省淄博市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案及部分解析)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年山東省淄博市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案及部分解析)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0

B.f(xo)必定存在,但f(xo)不一定等于零

C.f(xo)可能不存在

D.f(xo)必定不存在

3.

4.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

5.函數(shù)z=x2-xy+y2+9x-6y+20有()

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1

6.lim(x2+1)=

x→0

A.3

B.2

C.1

D.0

7.微分方程y′-y=0的通解為().

A.y=ex+C

B.y=e-x+C

C.y=Cex

D.y=Ce-x

8.

9.設(shè)y=exsinx,則y'''=A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

10.若,則下列命題中正確的有()。A.

B.

C.

D.

11.當(dāng)x→0時(shí),與x等價(jià)的無窮小量是()

A.

B.ln(1+x)

C.

D.x2(x+1)

12.

13.

14.A.A.

B.

C.

D.

15.若x0為f(x)的極值點(diǎn),則().A.A.f(x0)必定存在,且f(x0)=0

B.f(x0)必定存在,但f(x0)不-定等于零

C.f(x0)不存在或f(x0)=0

D.f(x0)必定不存在

16.()。A.2πB.πC.π/2D.π/417.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f'(-1)=0,當(dāng)x<-1時(shí),f'(x)<0;x>-1時(shí),f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)

18.

19.方程x2+2y2-z2=0表示的曲面是()A.A.橢球面B.錐面C.柱面D.平面20.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)二、填空題(20題)21.設(shè)函數(shù)x=3x+y2,則dz=___________22.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則23.

24.

25.

26.

27.過坐標(biāo)原點(diǎn)且與平面3x-7y+5z-12=0平行的平面方程為_________.

28.

29.

30.

31.

32.

33.______。

34.

35.

36.37.

38.設(shè)y=sin2x,則dy=______.

39.

40.設(shè)y=sin(2+x),則dy=.三、計(jì)算題(20題)41.

42.求微分方程y"-4y'+4y=e-2x的通解.

43.

44.45.46.證明:47.求微分方程的通解.

48.

49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

52.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.53.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.將f(x)=e-2X展開為x的冪級(jí)數(shù).57.

58.求曲線在點(diǎn)(1,3)處的切線方程.59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則四、解答題(10題)61.

62.

63.

64.

65.

66.

67.展開成x-1的冪級(jí)數(shù),并指明收斂區(qū)間(不考慮端點(diǎn))。

68.(本題滿分8分)

69.

70.

五、高等數(shù)學(xué)(0題)71.設(shè)f(x)在x=a某鄰域內(nèi)連續(xù)且f(a)為極大值,則存在δ>0,當(dāng)x∈(a一δ,a+δ)時(shí),必有()。A.(x—a)[f(x)一f(a)]≥0

B.(x—a)[f(x)一f(a)]≤0

C.

D.

六、解答題(0題)72.計(jì)算二重積分

,其中D是由直線

及y=1圍

成的平面區(qū)域.

參考答案

1.D解析:

2.C

3.D解析:

4.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

5.D

6.C

7.C所給方程為可分離變量方程.

8.C

9.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

10.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

11.B?

12.D

13.A

14.C

15.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).

若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:

(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(x)=|x|的極值點(diǎn).

(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.

從題目的選項(xiàng)可知應(yīng)選C.

本題常見的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f(x0)=0”認(rèn)為是極值的充分必要條件.

16.B

17.C本題考查的知識(shí)點(diǎn)為極值的第一充分條件.

由f'(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí),f'(x)<0;當(dāng)x>-1時(shí),f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

18.C解析:

19.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程可知,所給曲面為錐面,因此選B.

20.A

21.22.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此23.由可變上限積分求導(dǎo)公式可知

24.1/2本題考查了對(duì)∞-∞型未定式極限的知識(shí)點(diǎn),

25.

26.1/3

27.3x-7y+5z=0本題考查了平面方程的知識(shí)點(diǎn)。已知所求平面與3x-7y+5z-12=0平行,則其法向量為(3,-7,5),故所求方程為3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.

28.

29.

30.

解析:

31.(12)

32.x/1=y/2=z/-133.本題考查的知識(shí)點(diǎn)為極限運(yùn)算。

所求極限的表達(dá)式為分式,其分母的極限不為零。

因此

34.63/12

35.

36.發(fā)散

37.38.2cos2xdx這類問題通常有兩種解法.

解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,

因此dy=2cos2xdx.

解法2利用微分運(yùn)算公式

dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.

39.x+2y-z-2=040.cos(2+x)dx

這類問題通常有兩種解法.

解法1

因此dy=cos(2+x)dx.

解法2利用微分運(yùn)算公式

dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.41.由一階線性微分方程通解公式有

42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

43.

44.

45.

46.

47.

48.

49.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%50.由二重積分物理意義知

51.

52.

53.

54.

列表:

說明

55.函數(shù)的定義域?yàn)?/p>

注意

56.

57.

58.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

59.

60.由等價(jià)無窮小量的定義可知

61.

62.

63.

64.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論