2022年廣東省肇慶市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2022年廣東省肇慶市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2022年廣東省肇慶市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2022年廣東省肇慶市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2022年廣東省肇慶市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年廣東省肇慶市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.A.2/5B.0C.-2/5D.1/2

4.A.A.發(fā)散B.絕對(duì)收斂C.條件收斂D.收斂性與k有關(guān)

5.

A.0

B.cos2-cos1

C.sin1-sin2

D.sin2-sin1

6.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2

7.A.e

B.

C.

D.

8.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值

9.前饋控制、同期控制和反饋控制劃分的標(biāo)準(zhǔn)是()

A.按照時(shí)機(jī)、對(duì)象和目的劃分B.按照業(yè)務(wù)范圍劃分C.按照控制的順序劃分D.按照控制對(duì)象的全面性劃分

10.

11.

12.

13.

14.

A.1B.0C.-1D.-2

15.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

16.當(dāng)x→0時(shí),與x等價(jià)的無窮小量是

A.A.

B.ln(1+x)

C.C.

D.x2(x+1)

17.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

18.

19.下列等式中正確的是()。A.

B.

C.

D.

20.

二、填空題(20題)21.設(shè),且k為常數(shù),則k=______.

22.

23.設(shè)f(x)=x(x-1),則f'(1)=__________。

24.

25.

26.

27.已知平面π:2x+y-3z+2=0,則過點(diǎn)(0,0,0)且與π垂直的直線方程為______.

28.

29.

30.設(shè)y=sin(2+x),則dy=.

31.微分方程y'+4y=0的通解為_________。

32.

33.

34.

35.

36.

37.

則F(O)=_________.

38.設(shè)f(x,y)=sin(xy2),則df(x,y)=______.

39.過點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為______.

40.y''-2y'-3y=0的通解是______.

三、計(jì)算題(20題)41.證明:

42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

43.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

44.求微分方程y"-4y'+4y=e-2x的通解.

45.

46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

48.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

50.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

51.

52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

53.將f(x)=e-2X展開為x的冪級(jí)數(shù).

54.

55.求曲線在點(diǎn)(1,3)處的切線方程.

56.

57.求微分方程的通解.

58.

59.

60.

四、解答題(10題)61.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

62.

63.(本題滿分10分)

64.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.

65.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。

66.設(shè)平面薄片的方程可以表示為x2+y2≤R2,x≥0,薄片上點(diǎn)(x,y)處的密度,求該薄片的質(zhì)量M.

67.

(本題滿分8分)

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.f(z,y)=e-x.sin(x+2y),求

六、解答題(0題)72.求在區(qū)間[0,π]上由曲線y=sinx與y=0所圍成的圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積Vx。

參考答案

1.A

2.D

3.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)

4.C

5.A由于定積分

存在,它表示一個(gè)確定的數(shù)值,其導(dǎo)數(shù)為零,因此選A.

6.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由題設(shè)知f'(x0)=1,又由題設(shè)條件知

可知應(yīng)選B.

7.C

8.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

9.A解析:根據(jù)時(shí)機(jī)、對(duì)象和目的來劃分,控制可分為前饋控制、同期控制和反饋控制。

10.B

11.B

12.B

13.D

14.A

本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)公式.

可知應(yīng)選A.

15.C

16.B本題考查了等價(jià)無窮小量的知識(shí)點(diǎn)

17.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.

可知應(yīng)選D.

18.C

19.B

20.A解析:

21.

本題考查的知識(shí)點(diǎn)為廣義積分的計(jì)算.

22.3yx3y-1

23.

24.(1+x)ex(1+x)ex

解析:

25.e-2本題考查了函數(shù)的極限的知識(shí)點(diǎn),

26.1

27.

本題考查的知識(shí)點(diǎn)為直線的方程和平面與直線的關(guān)系.

由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知

為所求.

28.

29.0

30.cos(2+x)dx

這類問題通常有兩種解法.

解法1

因此dy=cos(2+x)dx.

解法2利用微分運(yùn)算公式

dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.

31.y=Ce-4x

32.

33.e-1/2

34.

35.2

36.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)

37.

38.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).

39.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來確定所求平面方程.

所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.

40.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.

41.

42.由二重積分物理意義知

43.由等價(jià)無窮小量的定義可知

44.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

45.

46.函數(shù)的定義域?yàn)?/p>

注意

47.

48.

49.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

50.

51.

52.

列表:

說明

53.

54.

55.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

56.

57.

58.

59.

60.由一階線性微分方程通解公式有

61.

62.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的應(yīng)用.

單調(diào)增加區(qū)間為(0,+∞);

單調(diào)減少區(qū)間為(-∞,0);

極小值為5,極小值點(diǎn)為x=0;

注上述表格填正確,則可得滿分.

這個(gè)題目包含了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性;求函數(shù)的極值與極值點(diǎn);求曲線的凹凸區(qū)間與拐點(diǎn).

63.本題考查的知識(shí)點(diǎn)為求解二階線性常系數(shù)非齊次微分方程.

相應(yīng)的齊次微分方程為

代入原方程可得

原方程的通解為

【解題指導(dǎo)】

由二階線性常系數(shù)非齊次微分方程解的結(jié)構(gòu)定理可知,其通解y=相應(yīng)齊次方程的通解Y+非齊次方程的-個(gè)特解y*.

其中Y可以通過求解特征方程得特征根而求出.而y*可以利用待定系數(shù)法求解.

64.

65.

66.

本題考查的知識(shí)點(diǎn)為二重積分的物理應(yīng)用.

若已知平面物質(zhì)薄片D,其密度為f(x,y),則所給平面薄片的質(zhì)量m可以由二重積分表示為

67.

本題考查的知識(shí)點(diǎn)為函數(shù)求導(dǎo).由于y=xsinx,可得

68.

69.

70

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論