




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.()A. B. C. D.2.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.3.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i4.將函數(shù)的圖像向右平移個單位長度,再將圖像上各點的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.5.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.36.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.7.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.9.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.10.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.11.設(shè)等差數(shù)列的前n項和為,且,,則()A.9 B.12 C. D.12.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為11,則圖中的判斷條件可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)x,y滿足,則的最大值為____________.14.在三棱錐中,三條側(cè)棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.15.函數(shù)的定義域是__________.16.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當(dāng)x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.18.(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.19.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.20.(12分)《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、、、八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布.(1)求物理原始成績在區(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記表示這3人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量,則,,)21.(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對任意的有.22.(10分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當(dāng)直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.2、C【解析】
框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時,退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時滿足輸出結(jié)果,故.故選:C.【點睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.3、B【解析】
復(fù)數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.4、C【解析】
根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因為是奇函數(shù),所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.5、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.6、B【解析】
根據(jù)焦點所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設(shè)雙曲線的方程為,一個焦點為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標(biāo)準(zhǔn)方程,易錯點在于漏掉考慮焦點所在坐標(biāo)軸導(dǎo)致方程形式出錯.7、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.8、A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.9、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.10、A【解析】
對復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計算過程要注意.11、A【解析】
由,可得以及,而,代入即可得到答案.【詳解】設(shè)公差為d,則解得,所以.故選:A.【點睛】本題考查等差數(shù)列基本量的計算,考查學(xué)生運(yùn)算求解能力,是一道基礎(chǔ)題.12、B【解析】
根據(jù)程序框圖知當(dāng)時,循環(huán)終止,此時,即可得答案.【詳解】,.運(yùn)行第一次,,不成立,運(yùn)行第二次,,不成立,運(yùn)行第三次,,不成立,運(yùn)行第四次,,不成立,運(yùn)行第五次,,成立,輸出i的值為11,結(jié)束.故選:B.【點睛】本題考查補(bǔ)充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
直接用表示出,然后由不等式性質(zhì)得出結(jié)論.【詳解】由題意,又,∴,即,∴的最大值為1.故答案為:1.【點睛】本題考查不等式的性質(zhì),掌握不等式的性質(zhì)是解題關(guān)鍵.14、【解析】
設(shè),可表示出,由三棱錐性質(zhì)得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設(shè)則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當(dāng)時,.故答案為:.【點睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和.15、【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.16、3【解析】
雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)當(dāng)時,<0,單調(diào)遞減;當(dāng)時,>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導(dǎo)數(shù)的計算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導(dǎo),再對a進(jìn)行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第(Ⅲ)問,構(gòu)造函數(shù)=(),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當(dāng)時,<0,單調(diào)遞減;當(dāng)時,>0,單調(diào)遞增.(Ⅱ)令=,則=.當(dāng)時,>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當(dāng)時,>0.當(dāng),時,=.故當(dāng)>在區(qū)間內(nèi)恒成立時,必有.當(dāng)時,>1.由(Ⅰ)有,而,所以此時>在區(qū)間內(nèi)不恒成立.當(dāng)時,令=().當(dāng)時,=.因此,在區(qū)間單調(diào)遞增.又因為=0,所以當(dāng)時,=>0,即>恒成立.綜上,.【考點】導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點睛】本題考查導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負(fù)確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結(jié)論縮小參數(shù)取值范圍.比較新穎,學(xué)生不易想到,有一定的難度.18、(1)證明見詳解;(2)或或【解析】
(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因為所以(2)當(dāng)時所以當(dāng)且僅當(dāng)即時等號成立因為存在,且,使得成立所以所以或解得:或或【點睛】1.要熟練掌握絕對值的三角不等式,即2.應(yīng)用基本不等式求最值時要滿足“一正二定三相等”.19、(1)見解析(2)【解析】
(1)連結(jié)BM,推導(dǎo)出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進(jìn)而AA1⊥平面BCM,AA1⊥MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導(dǎo)出△ABA1是等腰直角三角形,設(shè)AB,則AA1=2a,BM=AM=a,推導(dǎo)出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標(biāo)原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結(jié),,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設(shè),則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標(biāo)原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系,則,,.所以,則,,設(shè)平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.20、(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據(jù)正態(tài)曲線的對稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績在區(qū)間內(nèi)的概率,進(jìn)而可求出相應(yīng)的人數(shù);(Ⅱ)由題意得成績在區(qū)間[61,80]的概率為,且,由此可得的分布列和數(shù)學(xué)期望.【詳解】(Ⅰ)因為物理原始成績,所以.所以物理原始成績在(47,86)的人數(shù)為(人).(Ⅱ)由題意得,隨機(jī)抽取1人,其成績在區(qū)間[61,80]內(nèi)的概率為.所以隨機(jī)抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數(shù)學(xué)期望.【點睛】(1)解答第一問的關(guān)鍵是利用正態(tài)分布的三個特殊區(qū)間表示所求概率的區(qū)間,再根據(jù)特殊區(qū)間上的概率求解,解題時注意結(jié)合正態(tài)曲線的對稱性.(2)解答第二問的關(guān)鍵是判斷出隨機(jī)變量服從二項分布,然后可得分布列及其數(shù)學(xué)期望.當(dāng)被抽取的總體的容量較大時,抽樣可認(rèn)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人力資源管理的年度計劃
- 中國勞動合同范例
- 共同購置房產(chǎn)合同標(biāo)準(zhǔn)文本
- 跨文化交流教學(xué)工作計劃
- ul標(biāo)準(zhǔn)銅牌間距11.7mm
- 企業(yè)團(tuán)租合同標(biāo)準(zhǔn)文本
- 中交材料采購合同標(biāo)準(zhǔn)文本
- 幼兒園小班建設(shè)的全面規(guī)劃計劃
- 做商務(wù)合同標(biāo)準(zhǔn)文本
- wenhua培訓(xùn)合同范本
- 鬼谷神掌 (靜月山人整理)
- 施工日志(模板)
- GB/T 713.6-2023承壓設(shè)備用鋼板和鋼帶第6部分:調(diào)質(zhì)高強(qiáng)度鋼
- 人教版小學(xué)英語單詞表(匯總)
- 酒店住宿消費(fèi)流水明細(xì)賬單表
- 心肺復(fù)蘇及AED的使用
- 2023年嘉興市青少年信息學(xué)(計算機(jī))競賽(小學(xué)組)試卷
- (完整)西游記選擇題和答案
- 留守未成年人保護(hù)工作檢查表
- 中考物理電學(xué)計算專項訓(xùn)練
- GB/T 2423.22-2012環(huán)境試驗第2部分:試驗方法試驗N:溫度變化
評論
0/150
提交評論