高中數學知識點函數9篇_第1頁
高中數學知識點函數9篇_第2頁
高中數學知識點函數9篇_第3頁
高中數學知識點函數9篇_第4頁
高中數學知識點函數9篇_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1/1高中數學知識點函數(推薦9篇)

高中數學知識點函數第1篇定義與定義表達式

一般地,自變量x和因變量y之間存在如下關系:

y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0),對稱軸在y軸左;

當a與b異號時(即ab0時,拋物線與x軸有2個交點。

Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

Δ=b^2-4ac0時,開口方向向上,a0時,拋物線向上開口;當a0),對稱軸在y軸左;

當a與b異號時(即ab0時,拋物線與x軸有2個交點。

Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

Δ=b^2-4ac0時,直線必通過一、三象限,y隨x的增大而增大;

當k0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b0時,直線只通過一、三象限;當k0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

當h>0,k0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△圖象與x軸只有一個交點;

當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a0,則a可以是任意實數;

排除了為0這種可能,即對于x0的所有實數,q不能是偶數;

排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:

如果a為任意實數,則函數的定義域為大于0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

在x大于0時,函數的值域總是大于0的實數。

在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。

而只有a為正數,0才進入函數的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。

(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。

(4)當a小于0時,a越小,圖形傾斜程度越大。

(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。

(6)顯然冪函數無界。

高中數學知識點函數第8篇一、一次函數定義與定義式:

自變量x和因變量y有如下關系:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。

即:y=kx(k為常數,k≠0)

二、一次函數的性質:

的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實數b取任何實數)

當x=0時,b為函數在y軸上的截距。

三、一次函數的圖像及性質:

作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

四、確定一次函數的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函數的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個二元一次方程,得到k,b的值。

(4)最后得到一次函數的表達式。

五、一次函數在生活中的應用:

當時間t一定,距離s是速度v的一次函數。s=vt。

當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

六、常用公式:

求函數圖像的k值:(y1-y2)/(x1-x2)

求與x軸平行線段的中點:|x1-x2|/2

求與y軸平行線段的中點:|y1-y2|/2

求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

高中數學知識點函數第9篇一次函數在生活中的應用:

當時間t一定,距離s是速度v的一次函數。s=vt。

當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

常用公式:

求函數圖像的k值:(y1-y2)/(x1-x2)

求與x軸平行線段的中點:|x1-x2|/2

求與y軸平行線段的中點:|y1-y2|/2

求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

確定一次函數的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論