2022-2023學(xué)年山東省臨沂市羅莊區(qū)七校聯(lián)考數(shù)學(xué)高一下期末檢測(cè)模擬試題含解析_第1頁(yè)
2022-2023學(xué)年山東省臨沂市羅莊區(qū)七校聯(lián)考數(shù)學(xué)高一下期末檢測(cè)模擬試題含解析_第2頁(yè)
2022-2023學(xué)年山東省臨沂市羅莊區(qū)七校聯(lián)考數(shù)學(xué)高一下期末檢測(cè)模擬試題含解析_第3頁(yè)
2022-2023學(xué)年山東省臨沂市羅莊區(qū)七校聯(lián)考數(shù)學(xué)高一下期末檢測(cè)模擬試題含解析_第4頁(yè)
2022-2023學(xué)年山東省臨沂市羅莊區(qū)七校聯(lián)考數(shù)學(xué)高一下期末檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,且,,則()A. B. C. D.2.已知集合,,則()A. B. C. D.3.甲、乙、丙三人隨機(jī)排成一排,乙站在中間的概率是()A. B. C. D.4.將函數(shù)f(x)=sin(ωx+)(ω>0)的圖象向左平移個(gè)單位,所得到的函數(shù)圖象關(guān)于y軸對(duì)稱,則函數(shù)f(x)的最小正周期不可能是()A. B. C. D.5.函數(shù)(,)的部分圖象如圖所示,則的值分別是()A. B. C. D.6.等比數(shù)列的前n項(xiàng)和為,且,,成等差數(shù)列.若,則()A.15 B.7 C.8 D.167.在等差數(shù)列中,若,則的值為()A.15 B.21 C.24 D.188.?dāng)S兩顆均勻的骰子,則點(diǎn)數(shù)之和為5的概率等于()A. B. C. D.9.在中,角A,B,C的對(duì)邊分別為a,b,c,若,則角=()A. B. C. D.10.如圖,中,,,用表示,正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某奶茶店的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:)之間的關(guān)系如下:x012y5221通過(guò)上面的五組數(shù)據(jù)得到了x與y之間的線性回歸方程:;但現(xiàn)在丟失了一個(gè)數(shù)據(jù),該數(shù)據(jù)應(yīng)為_(kāi)___________.12.已知向量,的夾角為,若,,則________.13.在中,,,則的值為_(kāi)_______14.等比數(shù)列的首項(xiàng)為,公比為,記,則數(shù)列的最大項(xiàng)是第___________項(xiàng).15.已知是等比數(shù)列,,,則公比______.16.已知向量,.若向量與垂直,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.為了研究某種藥物,用小白鼠進(jìn)行試驗(yàn),發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時(shí)間的關(guān)系因使用方式的不同而不同.若使用注射方式給藥,則在注射后的3小時(shí)內(nèi),藥物在白鼠血液內(nèi)的濃度與時(shí)間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時(shí)間t滿足關(guān)系式:現(xiàn)對(duì)小白鼠同時(shí)進(jìn)行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾.(1)若a=1,求3小時(shí)內(nèi),該小白鼠何時(shí)血液中藥物的濃度最高,并求出最大值?(2)若使小白鼠在用藥后3小時(shí)內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍.18.已知三棱錐中,是邊長(zhǎng)為的正三角形,;(1)證明:平面平面;(2)設(shè)為棱的中點(diǎn),求二面角的余弦值.19.某中學(xué)從高三男生中隨機(jī)抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:組號(hào)分組頻數(shù)頻率第1組50.05第2組a0.35第3組30b第4組200.20第5組100.10合計(jì)n1.00(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;(2)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進(jìn)行不同項(xiàng)目的體能測(cè)試,若在這7名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,求第4組中至少有一名學(xué)生被抽中的概率.20.某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;方案二:每月底薪3500元,月銷售量不超過(guò)300件,沒(méi)有提成,超過(guò)300件的部分每件提成30元.(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;(2)從該銷售公司隨機(jī)選取一名推銷員,對(duì)他(或她)過(guò)去兩年的銷售情況進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:月銷售產(chǎn)品件數(shù)300400500600700次數(shù)24954把頻率視為概率,分別求兩種方案推銷員的月工資超過(guò)11090元的概率.21.已知,,且與的夾角為.(1)求在上的投影;(2)求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

利用兩角和差的正弦公式將β=α-(α﹣β)進(jìn)行轉(zhuǎn)化求解即可.【詳解】β=α-(α﹣β),∵<α,<β,β<,∴α,∵sin()0,∴<0,則cos(),∵sinα,∴cosα,則sinβ=sin[α-(α﹣β)]=sinαcos(α﹣β)-cosαsin(α﹣β)(),故選B【點(diǎn)睛】本題主要考查利用兩角和差的正弦公式,同角三角函數(shù)基本關(guān)系,將β=α-(α﹣β)進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵,是基礎(chǔ)題2、D【解析】依題意,故.3、B【解析】

先求出甲、乙、丙三人隨機(jī)排成一排的基本事件的個(gè)數(shù),再求出乙站在中間的基本事件的個(gè)數(shù),再求概率即可.【詳解】解:三個(gè)人排成一排的所有情況有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6種,乙在中間有2種,所以乙在中間的概率為,故選B.【點(diǎn)睛】本題考查了古典概型,屬基礎(chǔ)題.4、D【解析】

利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對(duì)稱性和周期性,求得函數(shù)的最小正周期為,由此得出結(jié)論.【詳解】解:將函數(shù)的圖象向左平移個(gè)單位,可得的圖象,根據(jù)所得到的函數(shù)圖象關(guān)于軸對(duì)稱,可得,即,.函數(shù)的最小正周期為,則函數(shù)的最小正周期不可能是,故選.【點(diǎn)睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對(duì)稱性和周期性,屬于基礎(chǔ)題.5、A【解析】

利用,求出,再利用,求出即可【詳解】,,,則有,代入得,則有,,,又,故答案選A【點(diǎn)睛】本題考查三角函數(shù)的圖像問(wèn)題,依次求出和即可,屬于簡(jiǎn)單題6、B【解析】

通過(guò),,成等差數(shù)列,計(jì)算出,再計(jì)算【詳解】等比數(shù)列的前n項(xiàng)和為,且,,成等差數(shù)列即故答案選B【點(diǎn)睛】本題考查了等比數(shù)列通項(xiàng)公式,等差中項(xiàng),前N項(xiàng)和,屬于??碱}型.7、D【解析】

利用等差數(shù)列的性質(zhì),將等式全部化為的形式,再計(jì)算?!驹斀狻恳?yàn)椋?,則,所以.故選D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題。8、B【解析】

試題分析:擲兩顆均勻的骰子,共有36種基本事件,點(diǎn)數(shù)之和為5的事件有(1,4),(2,3),(3,2),(4,1)這四種,因此所求概率為,選B.考點(diǎn):概率問(wèn)題9、A【解析】

由正弦定理可解得,利用大邊對(duì)大角可得范圍,從而解得A的值.【詳解】,由正弦定理可得:,,由大邊對(duì)大角可得:,解得:.故選A.【點(diǎn)睛】本題主要考查了正弦定理,大邊對(duì)大角,正弦函數(shù)的圖象和性質(zhì)等知識(shí)的應(yīng)用,解題時(shí)要注意分析角的范圍.10、C【解析】

由平面向量基本定理和三角形法則求解即可【詳解】由,可得,則,即.故選C.【點(diǎn)睛】本題考查平面向量基本定理和三角形法則,熟記定理和性質(zhì)是解題關(guān)鍵,是基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

根據(jù)回歸直線經(jīng)過(guò)數(shù)據(jù)的中心點(diǎn)可求.【詳解】設(shè)丟失的數(shù)據(jù)為,則,,把代入回歸方程可得,故答案為:4.【點(diǎn)睛】本題主要考查回歸直線的特征,明確回歸直線一定經(jīng)過(guò)樣本數(shù)據(jù)的中心點(diǎn)是求解本題的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).12、【解析】

由,展開(kāi)后進(jìn)行計(jì)算,得到的值,從而得到答案.【詳解】因?yàn)橄蛄?,的夾角為,若,,所以,所以.故答案為:.【點(diǎn)睛】本題考查求向量的模長(zhǎng),向量的數(shù)量積運(yùn)算,屬于簡(jiǎn)單題.13、【解析】

由,得到,由三角形的內(nèi)角和,求出,再由正弦定理求出的值.【詳解】因?yàn)?,,所以,所以,在中,由正弦定理得,所?【點(diǎn)睛】本題考查正弦定理解三角形,屬于簡(jiǎn)單題.14、【解析】

求得,則可將問(wèn)題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,利用二次函數(shù)的基本性質(zhì)求解即可.【詳解】由等比數(shù)列的通項(xiàng)公式可得,,則問(wèn)題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,,當(dāng)時(shí),取得最大值,此時(shí)為偶數(shù).因此,的最大項(xiàng)是第項(xiàng).故答案為:.【點(diǎn)睛】本題考查等比數(shù)列前項(xiàng)積最值的計(jì)算,將問(wèn)題進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.15、【解析】

利用等比數(shù)列的性質(zhì)可求.【詳解】設(shè)等比數(shù)列的公比為,則,故.故答案為:【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)(為公比);(3)公比時(shí),則有,其中為常數(shù)且;(4)為等比數(shù)列()且公比為.16、7【解析】

由與垂直,則數(shù)量積為0,求出對(duì)應(yīng)的坐標(biāo),計(jì)算即可.【詳解】,,,又與垂直,故,解得,解得.故答案為:7.【點(diǎn)睛】本題考查通過(guò)向量數(shù)量積求參數(shù)的值.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)0.【解析】

(1)藥物在白鼠血液內(nèi)的濃度y與時(shí)間t的關(guān)系為:當(dāng)a=1時(shí),y=y(tǒng)1+y2;①當(dāng)0<t<1時(shí),y=﹣t4=﹣()2,所以ymax=f();②當(dāng)1≤t≤3時(shí),∵,所以ymax=7﹣2(當(dāng)t時(shí)取到),因?yàn)?,故ymax=f().(2)由題意y①??,又0<t<1,得出a≤1;②??由于1≤t≤3得到,令,則,所以,綜上得到以0.18、(1)見(jiàn)解析(2)【解析】

(1)由題意結(jié)合正弦定理可得,據(jù)此可證得平面,從而可得題中的結(jié)論;(2)在平面中,過(guò)點(diǎn)作,以所在的直線分別為軸建立空間直角坐標(biāo)系,由空間向量的結(jié)論求得半平面的法向量,然后求解二面角的余弦值即可.【詳解】(1)證明:在中,,,,由余弦定理可得,,,,平面,平面,平面平面.(2)在平面中,過(guò)點(diǎn)作,以所在的直線分別為軸建立空間直角坐標(biāo)系,則設(shè)平面的一個(gè)法向量為則解得,,即設(shè)平面的一個(gè)法向量為則解得,,即由圖可知二面角為銳角,所以二面角的余弦值為.【點(diǎn)睛】本題主要考查面面垂直的證明方法,空間向量的應(yīng)用等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19、(1)直方圖見(jiàn)解析;(2).【解析】

(1)由題意知,0.050,從而n=100,由此求出第2組的頻數(shù)和第3組的頻率,并完成頻率分布直方圖.(2)利用分層抽樣,35名學(xué)生中抽取7名學(xué)生,設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為,利用列舉法能求出第4組中至少有一名學(xué)生被抽中的概率.【詳解】(1)由頻率分布表可得,所以,;(2)因?yàn)榈?,4,5組共有35名學(xué)生,利用分層抽樣,在35名學(xué)生中抽取7名學(xué)生,每組分別為:第1組;第4組;第5組.設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為.則從7位學(xué)生中抽兩位學(xué)生的基本事件分別為:一共21種.記“第4組中至少有一名學(xué)生被抽中”為事件,即包含的基本事件分別為:一共3種,于是所以,.【點(diǎn)睛】本題考查概率的求法,考查頻率分布直方圖、列舉法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.20、(1);(2)方案一概率為,方案二概率為.【解析】

(1)利用一次函數(shù)和分段函數(shù)分別表示方案一、方案二的月工資與的關(guān)系式;(2)分別計(jì)算方案一、方案二的推銷員的月工資超過(guò)11090元的概率值.【詳解】解:(1)方案一:,;方案二:月工資為,所以.(2)方案一中推銷員的月工資超過(guò)11090元,則,解得,所以方案一中推銷員的月工資超過(guò)11090元的概率為;方案二中推銷員的月工資超過(guò)11090元,則,解得,所以方案二中推銷員的月工資超過(guò)11090元的概率為.【點(diǎn)睛】本題考查了分段函數(shù)與應(yīng)用問(wèn)題,也考查了利用頻率估計(jì)概率的應(yīng)用問(wèn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論