拉薩市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁
拉薩市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁
拉薩市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁
拉薩市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁
拉薩市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角α終邊上一點P(-2,3),則cos(A.32 B.-32 C.2.已知,取值如下表:014561.3m3m5.67.4畫散點圖分析可知:與線性相關(guān),且求得回歸方程為,則m的值(精確到0.1)為()A.1.5 B.1.6 C.1.7 D.1.83.設(shè)m>1,在約束條件y≥xA.1,1+2C.(1,3) D.(3,+∞)4.在投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金200萬,需場地,可獲得300萬;投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金300萬,需場地,可獲得200萬,現(xiàn)某單位可使用資金1400萬,場地,則投資這兩種產(chǎn)品,最大可獲利()A.1350萬 B.1475萬 C.1800萬 D.2100萬5.用輾轉(zhuǎn)相除法,計算56和264的最大公約數(shù)是().A.7 B.8 C.9 D.66.在面積為S的平行四邊形ABCD內(nèi)任取一點P,則三角形PBD的面積大于的概率為()A. B. C. D.7.已知函數(shù)f(x),則f[f(2)]=()A.1 B.2 C.3 D.48.已知某區(qū)中小學(xué)學(xué)生人數(shù)如圖所示,為了解學(xué)生參加社會實踐活動的意向,擬采用分層抽樣的方法來進行調(diào)查。若高中需抽取20名學(xué)生,則小學(xué)與初中共需抽取的人數(shù)為()A.30 B.40 C.70 D.909.函數(shù)的圖象大致為()A. B. C. D.10.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,梯形中,,于,,分別是,的中點,將四邊形沿折起(不與平面重合),以下結(jié)論①面;②;③.則不論折至何位置都有_______.12.弧度制是數(shù)學(xué)上一種度量角的單位制,數(shù)學(xué)家歐拉在他的著作《無窮小分析概論》中提出把圓的半徑作為弧長的度量單位.已知一個扇形的弧長等于其半徑長,則該扇形圓心角的弧度數(shù)是__________.13.已知函數(shù),若對任意都有()成立,則的最小值為__________.14.若,則滿足的的取值范圍為______________;15.已知函數(shù),,則的最大值是__________.16.?dāng)?shù)列中,其前n項和,則的通項公式為______________..三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在等差數(shù)列中,為其前項和(),且,.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項為,證明:18.如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.19.已知,,與的夾角是(1)計算:①,②;(2)當(dāng)為何值時,與垂直?20.如圖,已知中,.設(shè),,它的內(nèi)接正方形的一邊在斜邊上,、分別在、上.假設(shè)的面積為,正方形的面積為.(Ⅰ)用表示的面積和正方形的面積;(Ⅱ)設(shè),試求的最大值,并判斷此時的形狀.21.做一個體積為,高為2m的長方體容器,問底面的長和寬分別為多少時,所用的材料表面積最少?并求出其最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】角α終邊上一點P(-2,3),所以cos(2、C【解析】

根據(jù)表格中的數(shù)據(jù),求得樣本中心為,代入回歸直線方程,即可求解.【詳解】由題意,根據(jù)表格中的數(shù)據(jù),可得,,即樣本中心為,代入回歸直線方程,即,解得,故選C.【點睛】本題主要考查了回歸直線方程的應(yīng)用,其中解答中熟記回歸直線方程的基本特征是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、A【解析】試題分析:∵,故直線與直線交于點,目標(biāo)函數(shù)對應(yīng)的直線與直線垂直,且在點,取得最大值,其關(guān)系如圖所示:即,解得,又∵,解得,選:A.考點:簡單線性規(guī)劃的應(yīng)用.【方法點睛】本題考查的知識點是簡單線性規(guī)劃的應(yīng)用,我們可以判斷直線的傾斜角位于區(qū)間上,由此我們不難判斷出滿足約束條件的平面區(qū)域的形狀,其中根據(jù)平面直線方程判斷出目標(biāo)函數(shù)對應(yīng)的直線與直線垂直,且在點取得最大值,并由此構(gòu)造出關(guān)于的不等式組是解答本題的關(guān)鍵.4、B【解析】

設(shè)生產(chǎn)產(chǎn)品x百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元,先分析題意,找出相關(guān)量之間的不等關(guān)系,即滿足的約束條件,由約束條件畫出可行域;要求應(yīng)作怎樣的組合投資,可使獲利最大,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標(biāo)函數(shù)看成是一條直線,分析目標(biāo)函數(shù)與直線截距的關(guān)系,進而求出最優(yōu)解.【詳解】設(shè)生產(chǎn)產(chǎn)品百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元則約束條件為:,作出不等式組所表示的平面區(qū)域:目標(biāo)函數(shù)為.由解得.使目標(biāo)函數(shù)為化為要使得最大,即需要直線在軸的截距最大即可.由圖可知當(dāng)直線過點時截距最大.此時應(yīng)作生產(chǎn)產(chǎn)品3.25百噸,生產(chǎn)產(chǎn)品2.5百噸的組合投資,可使獲利最大.

故選:B.【點睛】在解決線性規(guī)劃的應(yīng)用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系?④使用平移直線法求出最優(yōu)解?⑤還原到現(xiàn)實問題中.屬于中檔題.5、B【解析】

根據(jù)輾轉(zhuǎn)相除法計算最大公約數(shù).【詳解】因為所以最大公約數(shù)是8,選B.【點睛】本題考查輾轉(zhuǎn)相除法,考查基本求解能力.6、A【解析】

轉(zhuǎn)化條件求出滿足要求的P點的范圍,求出面積比即可得解.【詳解】如圖,設(shè)P到BD距離為h,A到BD距離為H,則,,滿足條件的點在和中,所求概率.故選:A.【點睛】本題考查了幾何概型的概率計算,屬于基礎(chǔ)題.7、B【解析】

根據(jù)分段函數(shù)的表達(dá)式求解即可.【詳解】由題.故選:B【點睛】本題主要考查了分段函數(shù)的求值,屬于基礎(chǔ)題型.8、C【解析】

根據(jù)高中抽取的人數(shù)和高中總?cè)藬?shù)計算可得抽樣比;利用小學(xué)和初中總?cè)藬?shù)乘以抽樣比即可得到結(jié)果.【詳解】由題意可得,抽樣比為:則小學(xué)和初中共抽取:人本題正確選項:【點睛】本題考查分層抽樣中樣本數(shù)量的求解,關(guān)鍵是能夠明確分層抽樣原則,準(zhǔn)確求解出抽樣比,屬于基礎(chǔ)題.9、C【解析】

利用函數(shù)的性質(zhì)逐個排除即可求解.【詳解】函數(shù)的定義域為,故排除A、B.令又,即函數(shù)為奇函數(shù),所以函數(shù)的圖像關(guān)于原點對稱,排除D故選:C【點睛】本題考查了函數(shù)圖像的識別,同時考查了函數(shù)的性質(zhì),屬于基礎(chǔ)題.10、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.二、填空題:本大題共6小題,每小題5分,共30分。11、①②【解析】

根據(jù)題意作出折起后的幾何圖形,再根據(jù)線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識即可判斷各選項的真假.【詳解】作出折起后的幾何圖形,如圖所示:.因為,分別是,的中點,所以是的中位線,所以.而面,所以面,①正確;無論怎樣折起,始終有,所以面,即有,而,所以,②正確;折起后,面,面,且,故與是異面直線,③錯誤.故答案為:①②.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識的應(yīng)用,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于基礎(chǔ)題.12、1【解析】設(shè)扇形的弧長和半徑長為,由弧度制的定義可得,該扇形圓心角的弧度數(shù)是.13、【解析】

根據(jù)和的取值特點,判斷出兩個值都是最值,然后根據(jù)圖象去確定最小值.【詳解】因為對任意成立,所以取最小值,取最大值;取最小值時,與必為同一周期內(nèi)的最小值和最大值的對應(yīng)的,則,且,故.【點睛】任何一個函數(shù),若有對任何定義域成立,此時必有:,.14、【解析】

本題首先可確定在區(qū)間上所對應(yīng)的的值,然后可結(jié)合正弦函數(shù)圖像得出不等式的解集.【詳解】當(dāng)時,令,解得或,如圖,繪出正弦函數(shù)圖像,結(jié)合函數(shù)圖像可知,當(dāng)時,的解集為【點睛】本題考查三角函數(shù)不等式的解法,考查對正弦函數(shù)性質(zhì)的理解,考查計算能力,體現(xiàn)了基礎(chǔ)性,是簡單題.15、3【解析】函數(shù)在上為減函數(shù),故最大值為.16、【解析】

利用遞推關(guān)系,當(dāng)時,,當(dāng)時,,即可求出.【詳解】由題知:當(dāng)時,.當(dāng)時,.檢驗當(dāng)時,,所以.故答案為:【點睛】本題主要考查根據(jù)數(shù)列的前項和求數(shù)列的通項公式,體現(xiàn)了分類討論的思想,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】

(1)運用等差數(shù)列的通項公式和求和公式,解方程組,可得首項和公差,即可得到所求通項;(2)化簡,再利用裂項相消求數(shù)列的和,化簡整理,即可證得.【詳解】(1)設(shè)等差數(shù)列的公差是,由,,得解得,,∴.(2)由(1)知,,∴,,因為,則成立.【點睛】本題考查等差數(shù)列的通項公式的求法,也考查了裂項相消求和求數(shù)列的和,考查化簡整理的運算能力,屬于中檔題.18、(1)見證明;(2)【解析】

(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.19、(1)①;②;(2).【解析】

利用數(shù)量積的定義求解出的值;(1)將所求模長平方,從而得到關(guān)于模長和數(shù)量積的式子,代入求得模長的平方,再開平方得到結(jié)果;(2)向量互相垂直得到數(shù)量積等于零,由此建立方程,解方程求得結(jié)果.【詳解】由已知得:(1)①②(2)若與垂直,則即:,解得:【點睛】本題考查利用數(shù)量積求解向量的模長、利用數(shù)量積與向量垂直的關(guān)系求解參數(shù)的問題.求解向量的模長關(guān)鍵是能夠通過平方運算將問題轉(zhuǎn)化為模長和數(shù)量積運算的形式,從而使問題得以求解.20、(Ⅰ),;,(Ⅱ)最大值為;為等腰直角三角形【解析】

(Ⅰ)根據(jù)直角三角形,底面積乘高是面積;然后考慮正方形的邊長,求出邊長之后,即可表示正方形面積;(Ⅱ)化簡的表達(dá)式,利用基本不等式求最值,注意取等號的條件.【詳解】解:(Ⅰ)∵在中,∴,.∴∴,設(shè)正方形邊長為,則,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在區(qū)間上是減函數(shù)∴當(dāng)時,取得最小值,即取得最大值?!嗟淖畲笾禐榇藭r∴為等腰直角三角形【點睛】(1)函數(shù)的實際問題中,不僅要根據(jù)條件列出函數(shù)解析式時,同時還要注意定義域;(2)求解函數(shù)的最值的時候,當(dāng)取到最值時,一定要添加增加取等號的條件.21、長和寬均為4m時,最小值為64【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論