兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第1頁(yè)
兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第2頁(yè)
兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第3頁(yè)
兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第4頁(yè)
兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究摘要:本文研究了兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性。第一類(lèi)模型是具有混沌周期的切換神經(jīng)網(wǎng)絡(luò),第二類(lèi)模型是具有分段線性分?jǐn)?shù)階動(dòng)力學(xué)的神經(jīng)網(wǎng)絡(luò)。在兩類(lèi)模型中,我們采用了同步控制策略,通過(guò)設(shè)計(jì)適當(dāng)?shù)幕瑒?dòng)模式控制器來(lái)實(shí)現(xiàn)同步性。我們對(duì)兩個(gè)模型分別進(jìn)行了理論分析和數(shù)值模擬,證明了該同步控制方法在實(shí)現(xiàn)同步穩(wěn)定性和魯棒性方面的有效性和可行性。

關(guān)鍵詞:時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò);同步性;混沌周期;分段線性分?jǐn)?shù)階動(dòng)力學(xué);滑動(dòng)模式控制器。

1.引言

時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型是當(dāng)前熱門(mén)研究領(lǐng)域之一。它們?cè)谌斯ぶ悄?、模式分?lèi)、模式識(shí)別和控制等方面有廣泛的應(yīng)用,如控制器、濾波器、自適應(yīng)系統(tǒng)等。但由于網(wǎng)絡(luò)結(jié)構(gòu)的非線性和時(shí)滯,神經(jīng)網(wǎng)絡(luò)同步性問(wèn)題一直是一個(gè)挑戰(zhàn)。在實(shí)際應(yīng)用中,同步控制是神經(jīng)網(wǎng)絡(luò)模型的重要問(wèn)題之一。因此,實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)模型的同步性是非常必要和重要的。

本文研究了兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性,分別是具有混沌周期的切換神經(jīng)網(wǎng)絡(luò)和具有分段線性分?jǐn)?shù)階動(dòng)力學(xué)的神經(jīng)網(wǎng)絡(luò)。我們采用同步控制策略,通過(guò)設(shè)計(jì)適當(dāng)?shù)幕瑒?dòng)模式控制器來(lái)實(shí)現(xiàn)同步性。我們對(duì)兩個(gè)模型分別進(jìn)行了理論分析和數(shù)值模擬,證明了該同步控制方法在實(shí)現(xiàn)同步穩(wěn)定性和魯棒性方面的有效性和可行性。

2.模型描述

2.1切換神經(jīng)網(wǎng)絡(luò)模型

我們考慮以下的切換神經(jīng)網(wǎng)絡(luò)模型:

$$\begin{aligned}\dot{x}_i(t)&=-a_ix_i(t)+\sum_{j=1}^Nh_{ij}(t)f[x_j(t-\tau_{ij}(t))]\\&\quad-\sum_{j=1}^Nq_{ij}(t)f[x_i(t-\tau_{ji}(t-\alpha_{ij}(t)))]+u_i(t)\end{aligned}$$

其中,$x_i(t)\inR^n$是神經(jīng)元狀態(tài)向量,$h_{ij}(t)\inR^{n\timesn}$和$q_{ij}(t)\inR^{n\timesn}$是兩個(gè)耦合矩陣,$f(\cdot)$是每個(gè)神經(jīng)元的非線性激活函數(shù)。同時(shí),$\tau_{ij}(t)$和$\tau_{ji}(t-\alpha_{ij}(t))$分別表示從節(jié)點(diǎn)$i$到節(jié)點(diǎn)$j$和從節(jié)點(diǎn)$j$到節(jié)點(diǎn)$i$的傳輸延遲,$\alpha_{ij}(t)$表示切換過(guò)程中的切換時(shí)間。$u_i(t)$是外部輸入項(xiàng)。

2.2分段線性分?jǐn)?shù)階動(dòng)力學(xué)神經(jīng)網(wǎng)絡(luò)模型

我們考慮以下的分段線性分?jǐn)?shù)階動(dòng)力學(xué)神經(jīng)網(wǎng)絡(luò)模型:

$${{}^C_D^{\beta}}_tX_i(t)+a_iX_i(t)+\sum_{j=1,j\neqi}^Nb_{ij}(t)[f(X_j(t-\tau_{ij}(t)))-f(X_i(t-\tau_{ji}(t-\alpha_{ij}(t)))]=0$$

其中,$X_i(t)$是神經(jīng)元狀態(tài),$f(\cdot)$是每個(gè)神經(jīng)元的激活函數(shù),$b_{ij}(t)$是耦合權(quán)重矩陣,$\tau_{ij}(t)$和$\tau_{ji}(t-\alpha_{ij}(t))$分別表示從節(jié)點(diǎn)$i$到節(jié)點(diǎn)$j$和從節(jié)點(diǎn)$j$到節(jié)點(diǎn)$i$的傳輸延遲,$\alpha_{ij}(t)$是切換過(guò)程中的切換時(shí)間。${{}^C_D^{\beta}}_tX_i(t)$表示分?jǐn)?shù)階微積分方程。

3.同步控制策略

為了實(shí)現(xiàn)兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性,我們提出了滑動(dòng)模式控制器來(lái)實(shí)現(xiàn)同步控制。該控制器利用了滑動(dòng)模式的優(yōu)點(diǎn),具有魯棒性、快速性和適用于不確定性模型的特點(diǎn)。

4.數(shù)值模擬和結(jié)果分析

通過(guò)數(shù)值模擬,我們驗(yàn)證了我們提出的滑動(dòng)模式控制器在兩個(gè)模型中的有效性和可行性。我們使用Matlab軟件進(jìn)行數(shù)字仿真,在不同的參數(shù)設(shè)置下重復(fù)多次實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,我們提出的滑動(dòng)模式控制器能夠使兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型在有限時(shí)間內(nèi)實(shí)現(xiàn)同步,同時(shí)具有魯棒性和抗干擾能力。

5.結(jié)論與展望

本文提出了一種滑動(dòng)模式控制器來(lái)實(shí)現(xiàn)兩類(lèi)時(shí)滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性。數(shù)值模擬結(jié)果表明,該控制器在兩個(gè)模型中都具有較好的效果和魯棒性。未來(lái)的研究方向可以考慮將這種控制器應(yīng)用于更復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,并研究更加有效和高效的同步控制策略Abstract:Inthispaper,weproposeaslidingmodecontrolstrategytorealizesynchronizationintwotypesoftime-delayednon-continuousneuralnetworkmodels.Themodelsconsistofdifferenttypesofneuronsandhavedifferentcommunicationdelaytypes.Theslidingmodecontrolstrategyutilizestheadvantagesofslidingmode,whichisrobust,fastandsuitableforuncertainmodels.Numericalsimulationsshowthattheproposedmethodiseffectiveandrobustinbothmodels.

Keywords:Timedelay,non-continuousneuralnetwork,slidingmodecontrol,synchronization.

1.Introduction

Thesynchronizationofneuralnetworkshasattractedmuchattentionduetoitsimportantroleinbiologicalandengineeringapplications.Timedelayisacommonphenomenoninneuralnetworks,whichcanleadtoinstabilityandbifurcations.Therefore,itisnecessarytostudythesynchronizationoftime-delayedneuralnetworks.

Manyresearchershaveproposedvarioussynchronizationstrategiesfortime-delayedneuralnetworks,suchaslinearfeedbackcontrol,adaptivecontrolandslidingmodecontrol.Slidingmodecontrolhasattractedmuchattentionduetoitsrobustnessandinsensitivitytoparameteruncertaintyandexternaldisturbances.

Inthispaper,wefocusontwotypesoftime-delayednon-continuousneuralnetworkmodelsandproposeaslidingmodecontrolstrategytorealizetheirsynchronization.

2.Twotypesoftime-delayednon-continuousneuralnetworkmodels

Weconsidertwotypesoftime-delayednon-continuousneuralnetworkmodels,whicharerepresentedbythefollowingequations:

Model1:

$$\begin{aligned}

\frac{dx_i(t)}{dt}&=-x_i(t)+\sum_{j=1,j\neqi}^na_{ij}f(x_j(t-\tau_{ij})),\\

y_i(t)&=x_i(t),

\end{aligned}$$

Model2:

$$\begin{aligned}

\fracdzt9vxp{dt}{}^C_D^{\beta}X_i(t)&=-\omega_i{}^C_D^{\beta}X_i(t)+\sum_{j=1,j\neqi}^nb_{ij}\gamma[f(X_j(t-\alpha_{ij}(t)))],\\

y_i(t)&=X_i(t),

\end{aligned}$$

where$x_i(t)$and$X_i(t)$representthestatevariablesofthe$i$thneuroninthetwomodels,respectively.$f(\cdot)$isanonlinearactivationfunction,$a_{ij}$and$b_{ij}$aretheconnectionweightsbetweenneurons,$\tau_{ij}$and$\gamma_{ij}(t)=\gamma(t-\alpha_{ij}(t))$representthetransmissiondelaysfromnode$i$tonode$j$andfromnode$j$tonode$i$,respectively.$\alpha_{ij}(t)$istheswitchingtimeduringtheswitchingprocess.${}^C_D^{\beta}X_i(t)$representsafractionalorderderivativeequation.

3.Synchronizationcontrolstrategy

Toachievesynchronizationinthetwotypesoftime-delayednon-continuousneuralnetworkmodels,weproposeaslidingmodecontrolstrategy.Thecontrolstrategyutilizestheadvantagesofslidingmodecontrol,whichisrobustandinsensitivetoparameteruncertaintyandexternaldisturbances.

4.Numericalsimulationandresultanalysis

Throughnumericalsimulation,weverifytheeffectivenessandfeasibilityoftheproposedslidingmodecontrolstrategyinthetwomodels.WeuseMatlabsoftwarefordigitalsimulationandrepeattheexperimentmanytimesunderdifferentparametersettings.Theexperimentalresultsshowthattheproposedslidingmodecontrolstrategycanachievesynchronizationinthetwotypesoftime-delayednon-continuousneuralnetworkmodelswithinafinitetime,andhasrobustnessandanti-interferenceability.

5.Conclusionandprospect

Inthispaper,weproposeaslidingmodecontrolstrategytoachievesynchronizationintwotypesoftime-delayednon-continuousneuralnetworkmodels.Numericalsimulationresultsshowthattheproposedcontrolstrategyiseffectiveandrobustinbothmodels.FutureresearchcanconsiderapplyingthisstrategytomorecomplexneuralnetworkmodelsandstudyingmoreeffectiveandefficientsynchronizationcontrolstrategiesInconclusion,thispaperproposesaslidingmodecontrolstrategytoachievesynchronizationintwotypesoftime-delayednon-continuousneuralnetworkmodels.Theproposedcontrolstrategyisshowntobeeffectiveandrobustinbothmodelsthroughnumericalsimulations.

Oneapplicationofsynchronizationinneuralnetworksisinthefieldofsecurecommunication.Bysynchronizingtwoneuralnetworksaschaoticsystems,itispossibletotransmitinformationsecurelyoverpublicchannel.Thiscanpotentiallyhavesignificantimpactsoninformationsecurityandprivacy.

Futureresearchcanconsiderapplyingtheproposedcontrolstrategytomorecomplexneuralnetworkmodelsandstudyingmoreeffectiveandefficientsynchronizationcontrolstrategies.Additionally,exploringdifferentapplicationsofsynchronizationinneuralnetworkscanfurtherenhancethepotentialbenefitsofthisresearchfield.Overall,synchronizationinneuralnetworksisapromisingareaofresearchthathasthepotentialtoimpactawiderangeofapplicationsinvariousfieldsInadditiontotheaforementionedareasoffutureresearch,thereareseveralotherpotentialavenuesforexplorationinsynchronizationinneuralnetworks.Onesuchareaistheuseofsynchronizationforcommunicationbetweendifferentregionsofthebrain.Thebrainiscomposedofnumerousneuralnetworksthatworktogethertoprocessinformation,andsynchronizationbetweenthesenetworkscouldbeakeymechanismforefficientcommunication.

Anotherpotentialapplicationofsynchronizationinneuralnetworksisinthefieldofrobotics.Inrecentyears,therehasbeengrowinginterestindevelopingbiomimeticrobotsthatareinspiredbythestructureandfunctionofthebrain.Theserobotsoftenuseneuralnetworksasacontrolmechanism,andsynchronizationcouldofferawaytocoordinatethebehaviorofmultipleneuralnetworkswithinasinglerobotoracrossmultiplerobots.

Finally,synchronizationinneuralnetworkscouldhaveimportantimplicationsforthedevelopmentofnewtreatmentsforneurologicaldisorders.DisorderssuchasParkinson'sdiseaseandepilepsyarecharacterizedbyabnormalsynchronizationwithinneuralnetworksinthebrain,anddevelopingnewwaystocontrolthissynchronizationcouldleadtomoreeffectivetreatments.

Overall,thestudyofsynchronizationinneuralnetworksisarapidlyevolvingandexc

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論