兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第1頁
兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第2頁
兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第3頁
兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第4頁
兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性研究摘要:本文研究了兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性。第一類模型是具有混沌周期的切換神經(jīng)網(wǎng)絡(luò),第二類模型是具有分段線性分?jǐn)?shù)階動力學(xué)的神經(jīng)網(wǎng)絡(luò)。在兩類模型中,我們采用了同步控制策略,通過設(shè)計適當(dāng)?shù)幕瑒幽J娇刂破鱽韺崿F(xiàn)同步性。我們對兩個模型分別進(jìn)行了理論分析和數(shù)值模擬,證明了該同步控制方法在實現(xiàn)同步穩(wěn)定性和魯棒性方面的有效性和可行性。

關(guān)鍵詞:時滯不連續(xù)神經(jīng)網(wǎng)絡(luò);同步性;混沌周期;分段線性分?jǐn)?shù)階動力學(xué);滑動模式控制器。

1.引言

時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型是當(dāng)前熱門研究領(lǐng)域之一。它們在人工智能、模式分類、模式識別和控制等方面有廣泛的應(yīng)用,如控制器、濾波器、自適應(yīng)系統(tǒng)等。但由于網(wǎng)絡(luò)結(jié)構(gòu)的非線性和時滯,神經(jīng)網(wǎng)絡(luò)同步性問題一直是一個挑戰(zhàn)。在實際應(yīng)用中,同步控制是神經(jīng)網(wǎng)絡(luò)模型的重要問題之一。因此,實現(xiàn)神經(jīng)網(wǎng)絡(luò)模型的同步性是非常必要和重要的。

本文研究了兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性,分別是具有混沌周期的切換神經(jīng)網(wǎng)絡(luò)和具有分段線性分?jǐn)?shù)階動力學(xué)的神經(jīng)網(wǎng)絡(luò)。我們采用同步控制策略,通過設(shè)計適當(dāng)?shù)幕瑒幽J娇刂破鱽韺崿F(xiàn)同步性。我們對兩個模型分別進(jìn)行了理論分析和數(shù)值模擬,證明了該同步控制方法在實現(xiàn)同步穩(wěn)定性和魯棒性方面的有效性和可行性。

2.模型描述

2.1切換神經(jīng)網(wǎng)絡(luò)模型

我們考慮以下的切換神經(jīng)網(wǎng)絡(luò)模型:

$$\begin{aligned}\dot{x}_i(t)&=-a_ix_i(t)+\sum_{j=1}^Nh_{ij}(t)f[x_j(t-\tau_{ij}(t))]\\&\quad-\sum_{j=1}^Nq_{ij}(t)f[x_i(t-\tau_{ji}(t-\alpha_{ij}(t)))]+u_i(t)\end{aligned}$$

其中,$x_i(t)\inR^n$是神經(jīng)元狀態(tài)向量,$h_{ij}(t)\inR^{n\timesn}$和$q_{ij}(t)\inR^{n\timesn}$是兩個耦合矩陣,$f(\cdot)$是每個神經(jīng)元的非線性激活函數(shù)。同時,$\tau_{ij}(t)$和$\tau_{ji}(t-\alpha_{ij}(t))$分別表示從節(jié)點$i$到節(jié)點$j$和從節(jié)點$j$到節(jié)點$i$的傳輸延遲,$\alpha_{ij}(t)$表示切換過程中的切換時間。$u_i(t)$是外部輸入項。

2.2分段線性分?jǐn)?shù)階動力學(xué)神經(jīng)網(wǎng)絡(luò)模型

我們考慮以下的分段線性分?jǐn)?shù)階動力學(xué)神經(jīng)網(wǎng)絡(luò)模型:

$${{}^C_D^{\beta}}_tX_i(t)+a_iX_i(t)+\sum_{j=1,j\neqi}^Nb_{ij}(t)[f(X_j(t-\tau_{ij}(t)))-f(X_i(t-\tau_{ji}(t-\alpha_{ij}(t)))]=0$$

其中,$X_i(t)$是神經(jīng)元狀態(tài),$f(\cdot)$是每個神經(jīng)元的激活函數(shù),$b_{ij}(t)$是耦合權(quán)重矩陣,$\tau_{ij}(t)$和$\tau_{ji}(t-\alpha_{ij}(t))$分別表示從節(jié)點$i$到節(jié)點$j$和從節(jié)點$j$到節(jié)點$i$的傳輸延遲,$\alpha_{ij}(t)$是切換過程中的切換時間。${{}^C_D^{\beta}}_tX_i(t)$表示分?jǐn)?shù)階微積分方程。

3.同步控制策略

為了實現(xiàn)兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性,我們提出了滑動模式控制器來實現(xiàn)同步控制。該控制器利用了滑動模式的優(yōu)點,具有魯棒性、快速性和適用于不確定性模型的特點。

4.數(shù)值模擬和結(jié)果分析

通過數(shù)值模擬,我們驗證了我們提出的滑動模式控制器在兩個模型中的有效性和可行性。我們使用Matlab軟件進(jìn)行數(shù)字仿真,在不同的參數(shù)設(shè)置下重復(fù)多次實驗。實驗結(jié)果表明,我們提出的滑動模式控制器能夠使兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型在有限時間內(nèi)實現(xiàn)同步,同時具有魯棒性和抗干擾能力。

5.結(jié)論與展望

本文提出了一種滑動模式控制器來實現(xiàn)兩類時滯不連續(xù)神經(jīng)網(wǎng)絡(luò)模型的同步性。數(shù)值模擬結(jié)果表明,該控制器在兩個模型中都具有較好的效果和魯棒性。未來的研究方向可以考慮將這種控制器應(yīng)用于更復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,并研究更加有效和高效的同步控制策略Abstract:Inthispaper,weproposeaslidingmodecontrolstrategytorealizesynchronizationintwotypesoftime-delayednon-continuousneuralnetworkmodels.Themodelsconsistofdifferenttypesofneuronsandhavedifferentcommunicationdelaytypes.Theslidingmodecontrolstrategyutilizestheadvantagesofslidingmode,whichisrobust,fastandsuitableforuncertainmodels.Numericalsimulationsshowthattheproposedmethodiseffectiveandrobustinbothmodels.

Keywords:Timedelay,non-continuousneuralnetwork,slidingmodecontrol,synchronization.

1.Introduction

Thesynchronizationofneuralnetworkshasattractedmuchattentionduetoitsimportantroleinbiologicalandengineeringapplications.Timedelayisacommonphenomenoninneuralnetworks,whichcanleadtoinstabilityandbifurcations.Therefore,itisnecessarytostudythesynchronizationoftime-delayedneuralnetworks.

Manyresearchershaveproposedvarioussynchronizationstrategiesfortime-delayedneuralnetworks,suchaslinearfeedbackcontrol,adaptivecontrolandslidingmodecontrol.Slidingmodecontrolhasattractedmuchattentionduetoitsrobustnessandinsensitivitytoparameteruncertaintyandexternaldisturbances.

Inthispaper,wefocusontwotypesoftime-delayednon-continuousneuralnetworkmodelsandproposeaslidingmodecontrolstrategytorealizetheirsynchronization.

2.Twotypesoftime-delayednon-continuousneuralnetworkmodels

Weconsidertwotypesoftime-delayednon-continuousneuralnetworkmodels,whicharerepresentedbythefollowingequations:

Model1:

$$\begin{aligned}

\frac{dx_i(t)}{dt}&=-x_i(t)+\sum_{j=1,j\neqi}^na_{ij}f(x_j(t-\tau_{ij})),\\

y_i(t)&=x_i(t),

\end{aligned}$$

Model2:

$$\begin{aligned}

\fracfhsymtd{dt}{}^C_D^{\beta}X_i(t)&=-\omega_i{}^C_D^{\beta}X_i(t)+\sum_{j=1,j\neqi}^nb_{ij}\gamma[f(X_j(t-\alpha_{ij}(t)))],\\

y_i(t)&=X_i(t),

\end{aligned}$$

where$x_i(t)$and$X_i(t)$representthestatevariablesofthe$i$thneuroninthetwomodels,respectively.$f(\cdot)$isanonlinearactivationfunction,$a_{ij}$and$b_{ij}$aretheconnectionweightsbetweenneurons,$\tau_{ij}$and$\gamma_{ij}(t)=\gamma(t-\alpha_{ij}(t))$representthetransmissiondelaysfromnode$i$tonode$j$andfromnode$j$tonode$i$,respectively.$\alpha_{ij}(t)$istheswitchingtimeduringtheswitchingprocess.${}^C_D^{\beta}X_i(t)$representsafractionalorderderivativeequation.

3.Synchronizationcontrolstrategy

Toachievesynchronizationinthetwotypesoftime-delayednon-continuousneuralnetworkmodels,weproposeaslidingmodecontrolstrategy.Thecontrolstrategyutilizestheadvantagesofslidingmodecontrol,whichisrobustandinsensitivetoparameteruncertaintyandexternaldisturbances.

4.Numericalsimulationandresultanalysis

Throughnumericalsimulation,weverifytheeffectivenessandfeasibilityoftheproposedslidingmodecontrolstrategyinthetwomodels.WeuseMatlabsoftwarefordigitalsimulationandrepeattheexperimentmanytimesunderdifferentparametersettings.Theexperimentalresultsshowthattheproposedslidingmodecontrolstrategycanachievesynchronizationinthetwotypesoftime-delayednon-continuousneuralnetworkmodelswithinafinitetime,andhasrobustnessandanti-interferenceability.

5.Conclusionandprospect

Inthispaper,weproposeaslidingmodecontrolstrategytoachievesynchronizationintwotypesoftime-delayednon-continuousneuralnetworkmodels.Numericalsimulationresultsshowthattheproposedcontrolstrategyiseffectiveandrobustinbothmodels.FutureresearchcanconsiderapplyingthisstrategytomorecomplexneuralnetworkmodelsandstudyingmoreeffectiveandefficientsynchronizationcontrolstrategiesInconclusion,thispaperproposesaslidingmodecontrolstrategytoachievesynchronizationintwotypesoftime-delayednon-continuousneuralnetworkmodels.Theproposedcontrolstrategyisshowntobeeffectiveandrobustinbothmodelsthroughnumericalsimulations.

Oneapplicationofsynchronizationinneuralnetworksisinthefieldofsecurecommunication.Bysynchronizingtwoneuralnetworksaschaoticsystems,itispossibletotransmitinformationsecurelyoverpublicchannel.Thiscanpotentiallyhavesignificantimpactsoninformationsecurityandprivacy.

Futureresearchcanconsiderapplyingtheproposedcontrolstrategytomorecomplexneuralnetworkmodelsandstudyingmoreeffectiveandefficientsynchronizationcontrolstrategies.Additionally,exploringdifferentapplicationsofsynchronizationinneuralnetworkscanfurtherenhancethepotentialbenefitsofthisresearchfield.Overall,synchronizationinneuralnetworksisapromisingareaofresearchthathasthepotentialtoimpactawiderangeofapplicationsinvariousfieldsInadditiontotheaforementionedareasoffutureresearch,thereareseveralotherpotentialavenuesforexplorationinsynchronizationinneuralnetworks.Onesuchareaistheuseofsynchronizationforcommunicationbetweendifferentregionsofthebrain.Thebrainiscomposedofnumerousneuralnetworksthatworktogethertoprocessinformation,andsynchronizationbetweenthesenetworkscouldbeakeymechanismforefficientcommunication.

Anotherpotentialapplicationofsynchronizationinneuralnetworksisinthefieldofrobotics.Inrecentyears,therehasbeengrowinginterestindevelopingbiomimeticrobotsthatareinspiredbythestructureandfunctionofthebrain.Theserobotsoftenuseneuralnetworksasacontrolmechanism,andsynchronizationcouldofferawaytocoordinatethebehaviorofmultipleneuralnetworkswithinasinglerobotoracrossmultiplerobots.

Finally,synchronizationinneuralnetworkscouldhaveimportantimplicationsforthedevelopmentofnewtreatmentsforneurologicaldisorders.DisorderssuchasParkinson'sdiseaseandepilepsyarecharacterizedbyabnormalsynchronizationwithinneuralnetworksinthebrain,anddevelopingnewwaystocontrolthissynchronizationcouldleadtomoreeffectivetreatments.

Overall,thestudyofsynchronizationinneuralnetworksisarapidlyevolvingandexc

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論