版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù)x,y滿足約束條件,那么目標函數(shù)的最大值是()A.0 B.1 C. D.102.已知,若、、三點共線,則為()A. B. C. D.23.以下說法正確的是()A.零向量與單位向量的模相等B.模相等的向量是相等向量C.已知均為單位向量,若,則與的夾角為D.向量與向量是共線向量,則四點在一條直線上4.已知且,則為()A. B. C. D.5.我國古代數(shù)學名著《九章算術》中記載的“芻甍”(chumeng)是底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍.四邊形為矩形,與都是等邊三角形,,,則此“芻甍”的表面積為()A. B. C. D.6.角的終邊經過點且,則的值為()A.-3 B.3 C.±3 D.57.在邊長為1的正方體中,,,分別是棱,,的中點,是底面內一動點,若直線與平面沒有公共點,則三角形面積的最小值為()A.1 B. C. D.8.記等差數(shù)列前項和,如果已知的值,我們可以求得()A.的值 B.的值 C.的值 D.的值9.已知且,則的取值范圍是()A. B. C. D.10.在中,,則=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知當時,函數(shù)(且)取得最小值,則時,的值為__________.12.若2弧度的圓心角所對的弧長為4cm,則這個圓心角所夾的扇形的面積是______.13.已知是以為首項,為公差的等差數(shù)列,是其前項和,則數(shù)列的最小項為第___項14.已知三棱錐的外接球的球心恰好是線段的中點,且,則三棱錐的體積為__________.15.已知是邊長為4的等邊三角形,為平面內一點,則的最小值為__________.16.方程在區(qū)間上的解為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,內角,,的對邊分別為,,,已知,.(Ⅰ)求的值;(Ⅱ)若,求邊的值.18.已知是同一平面內的三個向量,;(1)若,且,求的坐標;(2)若,且與垂直,求與的夾角.19.在等差數(shù)列中,已知,.(1)求數(shù)列的前項和的最大值;(2)若,求數(shù)列前項和.20.解下列方程(1);(2);21.若數(shù)列滿足:對于,都有(為常數(shù)),則稱數(shù)列是公差為的“隔項等差”數(shù)列.(Ⅰ)若,是公差為8的“隔項等差”數(shù)列,求的前項之和;(Ⅱ)設數(shù)列滿足:,對于,都有.①求證:數(shù)列為“隔項等差”數(shù)列,并求其通項公式;②設數(shù)列的前項和為,試研究:是否存在實數(shù),使得成等比數(shù)列()?若存在,請求出的值;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據約束條件,畫出可行域,再平移目標函數(shù)所在的直線,找到最優(yōu)點,將最優(yōu)點的坐標代入目標函數(shù)求最值.【詳解】畫出可行域(如圖),平移直線,當目標直線過點時,目標函數(shù)取得最大值,.故選:D【點睛】本題主要考查線性規(guī)劃求最值問題,還考查了數(shù)形結合的思想,屬于基礎題.2、C【解析】
由平面向量中的三點共線問題可得:,由基本定理及線性運算可得:即得解.【詳解】因為,若,,三點共線則,解得,即即即即故選:【點睛】本題考查平面向量基本定理和共線定理,屬于基礎題.3、C【解析】
根據零向量、單位向量、相等向量,向量的模、向量共線、向量數(shù)量積的運算的知識分析選項,由此確定正確選項.【詳解】對于A選項,零向量的模是,單位向量的模是,兩者不相等,故A選項說法錯誤.對于B選項,兩個向量大小和方向都相等才是相等向量,故B選項說法錯誤.對于C選項,由,故C選項說法正確.對于D選項,向量與向量是共線向量,但是這兩個向量沒有公共點,所以無法判斷是否在一條直線上.故D選項說法錯誤.故選:C【點睛】本小題主要考查向量的有關概念,考查向量數(shù)量積的運算,屬于基礎題.4、B【解析】由題意得,因為,即,所以,又,又,且,所以,故選B.5、A【解析】
分別計算出每個面積,相加得到答案.【詳解】故答案選A【點睛】本題考查了圖像的表面積,意在考查學生的計算能力.6、B【解析】
根據三角函數(shù)的定義建立方程關系即可.【詳解】因為角的終邊經過點且,所以則解得【點睛】本題主要考查三角函數(shù)的定義的應用,應注意求出的b為正值.7、D【解析】
根據直線與平面沒有公共點可知平面.將截面補全后,可確定點的位置,進而求得三角形面積的最小值.【詳解】由題意,,分別是棱,,的中點,補全截面為,如下圖所示:因為直線與平面沒有公共點所以平面,即平面,平面平面此時位于底面對角線上,且當與底面中心重合時,取得最小值此時三角形的面積最小故選:D【點睛】本題考查了直線與平面平行、平面與平面平行的性質與應用,過定點截面的作法,屬于難題.8、C【解析】
設等差數(shù)列{an}的首項為a1,公差為d,由a5+a21=2a1+24d的值為已知,再利用等差數(shù)列的求和公式,即可得出結論.【詳解】設等差數(shù)列{an}的首項為a1,公差為d,∵已知a5+a21的值,∴2a1+24d的值為已知,∴a1+12d的值為已知,∵∴我們可以求得S25的值.故選:C.【點睛】本題考查等差數(shù)列的通項公式與求和公式的應用,考查學生的計算能力,屬于中檔題.9、A【解析】分析:,由,可得,又,可得,化簡整理即可得出.詳解:,由,可得,又,可得,化為,解得,則的取值范圍是.故選:A.點睛:本題考查了基本不等式的性質、一元二次不等式的解法,考查了推理能力與計算能力,屬于中檔題.10、C【解析】
解:因為由正弦定理,所以又c<a所以,所以二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
先根據計算,化簡函數(shù),再根據當時,函數(shù)取得最小值,代入計算得到答案.【詳解】或當時,函數(shù)取得最小值:或(舍去)故答案為3【點睛】本題考查了三角函數(shù)的化簡,輔助角公式,函數(shù)的最值,綜合性較強,意在考查學生的綜合應用能力和計算能力.12、【解析】
先求出扇形的半徑,再求這個圓心角所夾的扇形的面積.【詳解】設扇形的半徑為R,由題得.所以扇形的面積為.故答案為:【點睛】本題主要考查扇形的半徑和面積的計算,意在考查學生對這些知識的理解掌握水平.13、【解析】
先求,利用二次函數(shù)性質求最值即可【詳解】由題當時最小故答案為8【點睛】本題考查等差數(shù)列的求和公式,考查二次函數(shù)求最值,是基礎題14、【解析】
根據題意得出平面后,由計算可得答案.【詳解】因為三棱錐的外接球的球心恰好是的中點,所以和都是直角三角形,又因為,所以,,又,則平面.因為,所以三角形為邊長是的等邊三角形,所以.故答案為:【點睛】本題考查了直線與平面垂直的判定,考查了三棱錐與球的組合,考查了三棱錐的體積公式,屬于中檔題.15、-1.【解析】分析:可建立坐標系,用平面向量的坐標運算解題.詳解:建立如圖所示的平面直角坐標系,則,設,∴,易知當時,取得最小值.故答案為-1.點睛:求最值問題,一般要建立一個函數(shù)關系式,化幾何最值問題為函數(shù)的最值,本題通過建立平面直角坐標系,把向量的數(shù)量積用點的坐標表示出來后,再用配方法得出最小值,根據表達式的幾何意義也能求得最大值.16、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數(shù)求值【名師點睛】已知三角函數(shù)值求角,基本思路是通過化簡,得到角的某種三角函數(shù)值,結合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,,然后用正弦定理求解即可(Ⅱ)利用,然后利用余弦定理求解即可【詳解】(Ⅰ)在中,由正弦定理,及,,可得.(Ⅱ)由及,可得,由余弦定理,即,可得.【點睛】本題考查正弦以及余弦定理的應用,屬于基礎題18、(1)或;(2).【解析】
(1)設向量,根據和得到關于的方程組,從而得到答案;(2)根據與垂直,得到的值,根據向量夾角公式得到的值,從而得到的值.【詳解】(1)設向量,因為,,,所以,解得,或所以或;(2)因為與垂直,所以,所以而,,所以,得,與的夾角為,所以,因為,所以.【點睛】本題考查根據向量的平行求向量的坐標,根據向量的垂直關系求向量的夾角,屬于簡單題.19、(1)9;(2)【解析】
(1)利用等差數(shù)列公式得到,當時,最大為9(2)討論和兩種情況,分別計算得到答案.【詳解】(1),又,所以令,得所以當時,最大為.(2)由(1)可知,當時,,所以當時,,所以.綜上所述:【點睛】本題考查了等差數(shù)列的通項公式,前N項和最大值,絕對值求和,找到通項公式的正負分界處是解題的關鍵,意在考查學生的計算能力和綜合應用能力.20、(1)或;(2);【解析】
(1)由,得,解方程即可.(2)由已知得到,解得即可.【詳解】(1),,或,或.(2),,解得.【點睛】本題考查了指數(shù)型、對數(shù)型方程,考查了指數(shù)、對數(shù)的運算,屬于基礎題.21、(Ⅰ)(Ⅱ)①當為偶數(shù)時,,當為奇數(shù)時,;②【解析】
試題分析:(Ⅰ)由新定義知:前項之和為兩等差數(shù)列之和,一個是首項為3,公差為8的等差數(shù)列前8項和,另一個是首項為17,公差為8的等差數(shù)列前7項和,所以前項之和(Ⅱ)①根據新定義知:證明目標為,,相減得,當為奇數(shù)時,依次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度船舶設計個人買賣合同3篇
- 鐵路給水施工合同
- 2025羊安鋼筋購銷合同
- 風力發(fā)電樁基施工合同樣本
- 2025公家土地聯(lián)產承包合同
- 通信公司兼職網管招聘合同模板
- 城市供熱設施型鋼租賃合同
- 住宅小區(qū)工程取消施工合同協(xié)議書
- 智慧城市圍護樁施工合同
- 2025行業(yè)工資集體協(xié)商合同
- 職業(yè)技術學院汽車專業(yè)人才需求調研報告
- 遼寧省2024年高中生物學業(yè)水平等級性考試試題
- 2024年河南省商丘市第十一中學中考數(shù)學第一次模擬試卷
- DZ∕T 0285-2015 礦山帷幕注漿規(guī)范(正式版)
- 2024年全國初中數(shù)學競賽試題含答案
- JBT 4730.10承壓設備無損檢測-第10部分:衍射時差法超聲檢測
- 蝦皮shopee新手賣家考試題庫及答案
- 對乙酰氨基酚泡騰顆粒的藥代動力學研究
- 沖壓車間主管年終總結
- 2024年中建五局招聘筆試參考題庫附帶答案詳解
- 商業(yè)計劃書農場
評論
0/150
提交評論