版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第7章方差分析與試驗設(shè)計7.1方差分析引論7.2單因素方差分析7.3方差分析中的多重比較學(xué)習(xí)目標(biāo)解釋方差分析的概念解釋方差分析的基本思想和原理掌握單因素方差分析的方法及應(yīng)用理解多重比較的意義7.1方差分析引論一、方差分析及其有關(guān)術(shù)語二、方差分析的基本思想和原理三、方差分析的基本假定四、問題的一般提法什么是方差分析(ANOVA)?
(analysisofvariance)
檢驗多個總體均值是否相等通過分析數(shù)據(jù)的誤差判斷各總體均值是否相等研究分類型自變量對數(shù)值型因變量的影響一個或多個分類尺度的自變量兩個或多個(k個)處理水平或分類有單因素方差分析和雙因素方差分析單因素方差分析:涉及一個分類的自變量雙因素方差分析:涉及兩個分類的自變量什么是方差分析?
(例題分析)消費者對四個行業(yè)的投訴次數(shù)行業(yè)觀測值零售業(yè)旅游業(yè)航空公司家電制造業(yè)12345675766494034534468392945565131492134404451657758【例】為了對幾個行業(yè)的服務(wù)質(zhì)量進行評價,消費者協(xié)會在四個行業(yè)分別抽取了不同的企業(yè)作為樣本。最近一年中消費者對總共23家企業(yè)投訴的次數(shù)如下表什么是方差分析?
(例題分析)分析四個行業(yè)之間的服務(wù)質(zhì)量是否有顯著差異,也就是要判斷“行業(yè)”對“投訴次數(shù)”是否有顯著影響作出這種判斷最終被歸結(jié)為檢驗這四個行業(yè)被投訴次數(shù)的均值是否相等若它們的均值相等,則意味著“行業(yè)”對投訴次數(shù)是沒有影響的,即它們之間的服務(wù)質(zhì)量沒有顯著差異;若均值不全相等,則意味著“行業(yè)”對投訴次數(shù)是有影響的,它們之間的服務(wù)質(zhì)量有顯著差異方差分析的基本思想和原理方差分析的基本思想和原理
(圖形分析)零售業(yè)旅游業(yè)航空公司家電制造從散點圖上可以看出不同行業(yè)被投訴的次數(shù)是有明顯差異的同一個行業(yè),不同企業(yè)被投訴的次數(shù)也明顯不同行業(yè)與被投訴次數(shù)之間有一定的關(guān)系方差分析的基本思想和原理
(圖形分析)方差分析的基本思想和原理
(兩類誤差)隨機誤差因素的同一水平(總體)下,樣本各觀察值之間的差異比如,同一行業(yè)下不同企業(yè)被投訴次數(shù)是不同的這種差異可以看成是隨機因素的影響,稱為隨機誤差
系統(tǒng)誤差因素的不同水平(不同總體)下,各觀察值之間的差異比如,不同行業(yè)之間的被投訴次數(shù)之間的差異這種差異可能是由于抽樣的隨機性所造成的,也可能是由于行業(yè)本身所造成的,后者所形成的誤差是由系統(tǒng)性因素造成的,稱為系統(tǒng)誤差方差分析的基本思想和原理
(兩類方差)數(shù)據(jù)的誤差用平方和(sumofsquares)表示,稱為方差組內(nèi)方差(withingroups)因素的同一水平(同一個總體)下樣本數(shù)據(jù)的方差組間方差(betweengroups)因素的不同水平(不同總體)下各樣本之間的方差方差分析的基本思想和原理
(方差的比較)若不同行業(yè)對投訴次數(shù)沒有影響,則組間誤差中只包含隨機誤差,沒有系統(tǒng)誤差。這時,組間誤差與組內(nèi)誤差經(jīng)過平均后的數(shù)值就應(yīng)該很接近,它們的比值就會接近1若不同行業(yè)對投訴次數(shù)有影響,在組間誤差中除了包含隨機誤差外,還會包含有系統(tǒng)誤差,這時組間誤差平均后的數(shù)值就會大于組內(nèi)誤差平均后的數(shù)值,它們之間的比值就會大于1當(dāng)這個比值大到某種程度時,就可以說不同水平之間存在著顯著差異方差分析的基本假定每個總體都應(yīng)服從正態(tài)分布對于因素的每一個水平,其觀察值是來自服從正態(tài)分布總體的簡單隨機樣本各個總體的方差必須相同各組觀察數(shù)據(jù)是從具有相同方差的總體中抽取的觀察值是獨立的方差分析中的基本假定在上述假定條件下,判斷行業(yè)對投訴次數(shù)是否有顯著影響,實際上也就是檢驗具有同方差的四個正態(tài)總體的均值是否相等如果四個總體的均值相等,可以期望四個樣本的均值也會很接近方差分析中基本假定
如果原假設(shè)成立,即H0:
m1=m2=m3=m4四個行業(yè)被投訴次數(shù)的均值都相等意味著每個樣本都來自均值為、方差為2的同一正態(tài)總體
Xf(X)1
2
3
4
問題的一般提法問題的一般提法設(shè)因素有k個水平,每個水平的均值分別用1,2,,k
表示要檢驗k個水平(總體)的均值是否相等,需要提出如下假設(shè):H0:
12…k
H1:
1,2,,k
不全相等設(shè)1為零售業(yè)被投訴次數(shù)的均值,2為旅游業(yè)被投訴次數(shù)的均值,3為航空公司被投訴次數(shù)的均值,4為家電制造業(yè)被投訴次數(shù)的均值,提出的假設(shè)為H0:
1234
H1:
1,2,3,4
不全相等7.2單因素方差分析一、數(shù)據(jù)結(jié)構(gòu)二、分析步驟分析步驟提出假設(shè)一般提法H0
:m1=m2=…=
mk
自變量對因變量沒有顯著影響
H1:m1
,m2
,…
,mk不全相等自變量對因變量有顯著影響
注意:拒絕原假設(shè),只表明至少有兩個總體的均值不相等,并不意味著所有的均值都不相等構(gòu)造檢驗的統(tǒng)計量
(例題分析)構(gòu)造檢驗的統(tǒng)計量
(計算總誤差平方和SST)全部觀察值與總平均值的離差平方和反映全部觀察值的離散狀況其計算公式為前例的計算結(jié)果:
SST=(57-47.869565)2+…+(58-47.869565)2=115.9295構(gòu)造檢驗的統(tǒng)計量
(計算水平項平方和SSA)各組平均值與總平均值的離差平方和反映各總體的樣本均值之間的差異程度,又稱組間平方和該平方和既包括隨機誤差,也包括系統(tǒng)誤差計算公式為前例的計算結(jié)果:SSA=1456.608696構(gòu)造檢驗的統(tǒng)計量
(計算誤差項平方和SSE)每個水平或組的各樣本數(shù)據(jù)與其組平均值的離差平方和反映每個樣本各觀察值的離散狀況,又稱組內(nèi)平方和該平方和反映的是隨機誤差的大小計算公式為前例的計算結(jié)果:SSE=2708構(gòu)造檢驗的統(tǒng)計量
(三個平方和的關(guān)系)總離差平方和(SST)、誤差項離差平方和(SSE)、水平項離差平方和(SSA)之間的關(guān)系SST=SSA+SSE前例的計算結(jié)果:
4164.608696=1456.608696+2708構(gòu)造檢驗的統(tǒng)計量
(三個平方和的作用)
SST反映全部數(shù)據(jù)總的誤差程度;SSE反映隨機誤差的大??;SSA反映隨機誤差和系統(tǒng)誤差的大小如果原假設(shè)成立,則表明沒有系統(tǒng)誤差,組間平方和SSA除以自由度后的均方與組內(nèi)平方和SSE和除以自由度后的均方差異就不會太大;如果組間均方顯著地大于組內(nèi)均方,說明各水平(總體)之間的差異不僅有隨機誤差,還有系統(tǒng)誤差判斷因素的水平是否對其觀察值有影響,實際上就是比較組間方差與組內(nèi)方差之間差異的大小構(gòu)造檢驗的統(tǒng)計量
(計算均方MS)各誤差平方和的大小與觀察值的多少有關(guān),為消除觀察值多少對誤差平方和大小的影響,需要將其平均,這就是均方,也稱為方差計算方法是用誤差平方和除以相應(yīng)的自由度三個平方和對應(yīng)的自由度分別是SST的自由度為n-1,其中n為全部觀察值的個數(shù)SSA的自由度為k-1,其中k為因素水平(總體)的個數(shù)SSE的自由度為n-k構(gòu)造檢驗的統(tǒng)計量
(計算均方MS)
組間方差:SSA的均方,記為MSA,計算公式為
組內(nèi)方差:SSE的均方,記為MSE,計算公式為構(gòu)造檢驗的統(tǒng)計量
(計算檢驗統(tǒng)計量F)將MSA和MSE進行對比,即得到所需要的檢驗統(tǒng)計量F當(dāng)H0為真時,二者的比值服從分子自由度為k-1、分母自由度為n-k的F分布,即構(gòu)造檢驗的統(tǒng)計量
(F分布與拒絕域)a
F分布F(k-1,n-k)0拒絕H0不能拒絕H0F統(tǒng)計決策
將統(tǒng)計量的值F與給定的顯著性水平的臨界值F進行比較,作出對原假設(shè)H0的決策根據(jù)給定的顯著性水平,在F分布表中查找與第一自由度df1=k-1、第二自由度df2=n-k相應(yīng)的臨界值F
若F>F,則拒絕原假設(shè)H0,表明均值之間的差異是顯著的,所檢驗的因素對觀察值有顯著影響若F<F,則不能拒絕原假設(shè)H0,表明所檢驗的因素對觀察值沒有顯著影響7.3方差分析中的多重比較一、多重比較的意義二、多重比較的方法方差分析中的多重比較
(multiplecomparisonprocedures)通過對總體均值之間的配對比較來進一步檢驗到底哪些均值之間存在差異可采用Fisher提出的最小顯著差異方法,簡寫為LSD
LSD方法是對檢驗兩個總體均值是否相等的t檢驗方法的總體方差估計加以修正(用MSE來代替)而得到的方差分析中的多重比較
(步驟)提出假設(shè)H0:mi=mj(第i個總體的均值等于第j個總體的均值)H1:mi
mj(第i個總體的均值不等于第j個總體的均值)計算檢驗的統(tǒng)計量:計算LSD決策:若,拒絕H0;若
,不拒絕H0方差分析中的多重比較
(例題分析)第1步:提出假設(shè)檢驗1:檢驗2:檢驗3:檢驗4:檢驗5:檢驗6:方差分析中的多重比較
(例題分析)第2步:計算檢驗統(tǒng)計量檢驗1:檢驗2:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度企業(yè)間人才交流與合作合同
- 二零二五年度土雞養(yǎng)殖標(biāo)準(zhǔn)化生產(chǎn)與品牌授權(quán)合同
- 二零二五年度知識產(chǎn)權(quán)保護與知識產(chǎn)權(quán)池建設(shè)合同范本
- 二零二五年度石油行業(yè)人才培養(yǎng)合同
- 2025年度城市照明設(shè)施維護保養(yǎng)合同協(xié)議
- 2025年度父母子女學(xué)業(yè)資助存款合同
- 2025年度人工智能技術(shù)研發(fā)及產(chǎn)品經(jīng)理聘用合同
- 2025年度鋼結(jié)構(gòu)廠房拆除與建筑垃圾運輸合同
- 2025年度虛擬現(xiàn)實技術(shù)公司控股權(quán)變更股權(quán)轉(zhuǎn)讓合同
- 二零二五年度企業(yè)經(jīng)理任期管理及福利合同
- 元素的用途完整版本
- 七十歲換領(lǐng)證駕考三力測試答題
- 2024版義務(wù)教育小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)
- Nokia銷售五部曲培訓(xùn)課件
- 服務(wù)人員隊伍穩(wěn)定措施
- 支氣管鏡護理測試題
- 大連理工大學(xué)信封紙
- 圖形創(chuàng)意(高職藝術(shù)設(shè)計)PPT完整全套教學(xué)課件
- 北京版小學(xué)英語必背單詞
- 2023年全國4月高等教育自學(xué)考試管理學(xué)原理00054試題及答案新編
- 稀土配合物和量子點共摻雜構(gòu)筑發(fā)光軟材料及其熒光性能研究
評論
0/150
提交評論