Phillips曲線的斷裂 -來自小組數(shù)據的證據 Breaks in the Phillips Curve - Evidence from Panel Data_第1頁
Phillips曲線的斷裂 -來自小組數(shù)據的證據 Breaks in the Phillips Curve - Evidence from Panel Data_第2頁
Phillips曲線的斷裂 -來自小組數(shù)據的證據 Breaks in the Phillips Curve - Evidence from Panel Data_第3頁
Phillips曲線的斷裂 -來自小組數(shù)據的證據 Breaks in the Phillips Curve - Evidence from Panel Data_第4頁
Phillips曲線的斷裂 -來自小組數(shù)據的證據 Breaks in the Phillips Curve - Evidence from Panel Data_第5頁
已閱讀5頁,還剩114頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

NBERWORKINGPAPERSERIES

BREAKSINTHEPHILLIPSCURVE:

EVIDENCEFROMPANELDATA

SimonSmith

AllanTimmermann

JonathanH.Wright

WorkingPaper31153

/papers/w31153

NATIONALBUREAUOFECONOMICRESEARCH

1050MassachusettsAvenue

Cambridge,MA02138

April2023

Wehavenothingtodisclose.TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauofEconomicResearch.

NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.

?2023bySimonSmith,AllanTimmermann,andJonathanH.Wright.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including?notice,isgiventothesource.

BreaksinthePhillipsCurve:EvidencefromPanelData

SimonSmith,AllanTimmermann,andJonathanH.Wright

NBERWorkingPaperNo.31153

April2023

JELNo.C11,C22,E51,E52

ABSTRACT

Werevisittime-variationinthePhillipscurve,applyingnewBayesianpanelmethodswithbreakpointstoUSandEuropeanUniondisaggregatedata.OurapproachallowsustoaccuratelyestimateboththenumberandtimingofbreaksinthePhillipscurve.Itfurtherallowsustodeterminetheexistenceofclustersofindustries,cities,orcountrieswhosePhillipscurvesdisplaysimilarpatternsofinstabilityandtoexaminelead-lagpatternsinhowindividualinflationserieschange.WefindevidenceofamarkedflatteninginthePhillipscurvesforUSsectoraldataandamongEUcountries,particularlypoorerones.Conversely,evidenceofaflatteningisweakerforMSA-leveldataandforthewagePhillipscurve.USregionaldataandEUdatapointtoakinkinthepricePhillipscurvewhichremainsrelativelysteepwhentheeconomyisrunninghot.

SimonSmithJonathanH.Wright

simon.c.smith@DepartmentofEconomics

JohnsHopkinsUniversity

AllanTimmermann3400N.CharlesStreet

DepartmentofEconomicsBaltimore,MD21218

UniversityofCaliforniaandNBER

LaJolla,CA92093-0508wrightj@

andCEPR

atimmermann@

1

1.Introduction

“Therewasatimewheretherewasatightconnectionbetweenunemploymentandin?ation.Thattimeislonggone.”(JeromePowell,2021.)

1

“...gradualismisawell-establishedprincipleforcentralbanksintimesofuncertainty.Whenfacedwithuncertaintyabouttheresilienceoftheeconomy,itpaystomovecarefully.”(ChristineLagarde,2022.)

2

ThePhillipscurveisakeyelementofthenewKeynesianmacroeconomicmodelandiscriticalinhowcentralbanksthinkofthemacroeconomy.Recentlytherehasbeenmuchdebateaboutapotential?atteningofthePhillipscurve,whichcould,inturn,hinderthecentralbanks’abilitytocontrolin?ation.ThegoalofthispaperistoapplyBayesianpanelmethodswithbreakpointstodisaggregatedatainordertorevisittimevariationintheslopeofthePhillipscurve.

Thereareanumberofmotivationsforlookingatdisaggregatedata,whetherbyindus-try,byregion,orbycountry.First,theremaybesomecross-sectionalheterogeneitywhichmightshedlightonthecausesofchangingPhillipscurves.Second,sincedi?erentregionsandsectorsexperiencedi?erentbusinesscycles,thereisextrainformationindisaggregatedatathatenablesustoidentifyslopecoe?cientsandregimechangesmorepreciselythanusingaggregatedataalone.Forexample,

Baietal.

(

1998

)and

SmithandTimmermann

(

2021

)arguethatpaneldataimposingcommontimingofbreaksincreasestheprecisionofbreakdateestimates,evenwhenthee?ectofsuchbreaksisallowedtovaryacrossindividualunitsorvariables.Third,severalrecentpapers(e.g.

Hooperetal.

(

2020

),

Fitzgeraldetal.

(

2020

)and

McLeayandTenreyro

(

2020

))havepointedoutthatifthecentralbankissuc-cessfullytargetingin?ation,thenthiscreatesanendogeneitybiasintheslopeofthePhillipscurve,biasingthecoe?cienttowardszero.Theuseofdisaggregatedatainconjunctionwiththeinclusionoftime?xede?ectsavoidsthisproblem,becausethecentralbankdoesnotspeci?callytargetin?ationinanyoneparticularregionorsector.

3

1ThisquoteisfromFederalReserveChairJeromePowell’spressConference,March17,2021;

/mediacenter/

?les/FOMCpresconf20210317.pdf.

2Thisquoteistakenfromthespeech“Monetarypolicyinanuncertainworld”byChristineLagarde,PresidentoftheECB,at“TheECBandItsWatchersXXIIconference,17March2022.”

3Theproblemwouldnotbesolvedwithdisaggregatedatawithouttime?xede?ects,becauseinthatcasesomeoftheidenti?cationwouldcomefromthetimeseriesdimensionwherethereisendogeneity.

2

Buildingontheseinsights,inthispaperweapplyrecentBayesianpanelbreakmethodstostudyPhillipscurvein?ationdynamics.OurBayesianpanelbreakapproachestimatesthenumberofbreakstothePhillipscurveandthetimeoftheiroccurrence(location).Further,itendogenouslyidenti?esclustersofin?ationserieswithcommonPhillipscurvesandforwhichtheimpactofbreaksissimilar.ThelatterfeatureallowsustoexamineevidenceofconvergenceinPhillipscurves.Finally,ourapproachallowsustoidentifylead-lage?ectsinthetimingbywhichindividualin?ationseriesgeta?ectedbybreaks.

ExistingworkonestimatingPhillipscurvesinpanelsofdisaggregatedatamostlyimposestherestrictionofacommonslopecoe?cient.AnalternativeistoestimatethePhillipscurveforeachindustryorregionseparately,butthisgivesupalotofinformationandtestsconductedonunivariatePhillipscurvemodelsgenerallylacksu?cientpowertodetectbreaksortoestimatetheirdatesprecisely.Anadvantageofourapproachisthatwecantakeamiddleground,anddopartialpooling,whileallowingforsomecross-sectionalvariationintheslopecoe?cients.Forexample,ourmethodologyallowsustoconsidergroupingsbyindustryorgeographicregion,withdi?erentslopecoe?cientsapplyingtoeachgroup.Wecanimposethegroupingsapriori,orthegroupingstructurecanbeestimatedaspartofthemodelingprocess.IfthedatasupportahomogeneousPhillipscurvethatisidenticalacrossallunits,onlyasinglegroupwillbeidenti?ed.Conversely,verystrongheterogeneityinPhillipscurvesacrossindustriesorregionswillleadtoamodelinwhicheachgroupcomprisesasingleunit.Ourmethodologyendogenouslydetermineswhetheranyofthesespecialcasesoranintermediatescenariowithmultipleunitsineachcluster,issupportedbythedata,thusadaptingtothedegreeofheterogeneityfoundinthedata.

ThefocusofouranalysisisonunderstandinghowthePhillipscurvehaschangedovertimeandidentifyingpossibledriversofsuchchange.Acomplexsetoffactorscouldbeatplay,includingchangesinunionizationandwageindexation,exposuretointernationaltrade,andeveneconomicintegration.TheimpactofbreakstothePhillipscurveis,therefore,likelytodependontheunitatwhichin?ationismeasured.Tohelpidentifythesedrivers,wethereforeapplyourestimationapproachtoavarietyofdatasets.Speci?cally,weconsiderUSpricePhillipscurvesusingdisaggregationattheindustryandMSAlevel,andtowagePhillipscurvesatthestatelevel.WealsoexaminePhillipscurvesatthecountrylevelwithintheEuropeanUnion.

Turningtotheempiricalresults,inUSindustrydatacoveringthesample1959Q1-2022Q3,we?ndtworegimechangesinthePhillipscurve;asteepeningaround1972anda?atteningin2001.Moreover,therecent?atteningofthePhillipscurveismorepronouncedforgoods

3

pricesthanforservicesprices.Thesteepeningaround1972comesafteraperiodwhenin?ationhadbeentrendingupforsomeyearsandwhenindexationofwagecontracts,eitherimplicitorexplicit,becamemorecommon.ThiswouldinturnsteepenthePhillipscurve.Meanwhile,thesubsequent?atteningcorrespondstoatimeofgreaterimportpenetration,especiallyfromChina,withChinajoiningtheWorldTradeOrganizationin2001.

4

WhileeconomicintuitionmightsuggestthatchangestotheslopeofthePhillipscurvewouldoccurgradually,China’saccessiontotheWTOmayhavecausedmoreofasuddenbreakwithquitesharpe?ectsdocumentedinstudiessuchas

BenaandSimintzi

(

2022

).Decliningunionizationandthefactthatin?ationisstableatalowlevelcreatinglessofaneedforpayingattentiontoin?ationinwagesettingareotherpossibleexplanationsforthe?atteningofthePhillipscurve.

5

Theseregimechangesthatwedetectareconsistentwithsomeoftheexistingliterature(e.g.

Hooperetal.

(

2020

)),although

Hazelletal.

(

2022

)argueusingstateleveldatathatthePhillipscurvehasbeenconsistently?at.

Ournon-commonbreakestimatessuggestthatthe?rstbreaktothePhillipscurvebasedontheindustry-levelPCEseriesoccursbetween1972and1973whilethebreaktothePhillipscurvebasedontheCPIseriesoccursbetween1971and1974.Asecondbreakoccursbetween

2001and2002.Inbothcases,thetimingofthebreaksis,thus,quitepreciselyestimated.

6

USregional(MSA)dataarenotavailableasfarbackintime,spanningtheshortersample1980-2022.ThismeansthatwecannotexaminethepresenceofPhillipscurvebreaksinthe70sforthisdata.Still,evenwiththisshortersamplecoverage,wemanagetoidentifyaregimechangearound2000.Further,we?ndagainthatMSAswithabove(below)medianratesofimportpenetrationfromChinahaveexperiencedaconsiderablystronger(weaker)?atteningoftheirpricePhillipscurve.These?ndingsareconsistentwithmoregoodscompetitionfromChinaexplainingapartofthe?atteningofthepricePhillipscurve.

BroadlysimilarpatternsarefoundintheEUforasamplethatbeginsin1986andendsin2021.Forthisdatawe?ndevidenceofasinglebreakwhichweestimateoccursin2004atwhichpointtheslopeofthePhillipscurve?attenssigni?cantly.Usingourclusteringmethodology,we?ndthatthePhillipscurveusedtobeparticularlysteepinpoorer(mostly

4

Aueretal.

(

2017

),

StockandWatson

(

2020

),

GilchristandZakrajˇsek

(2019

)and

Firat

(2020

)allshowhowgreatertradeopennesscan?attenthePhillipscurve.

5Whilewedo?nda?atteningbreakinthewagePhillipscurve(estimatedoverthesample1980Q1-2019Q4),itisofsmallermagnitudethanforthepricePhillipscurve,anditcomesin1989,earlierthanwe?ndwithmostpricedata.

6Thecommonbreakapproachcanbeviewedasasimpli?cationthatplacesthebreaktothePhillipscurveatagivendatewithinthebreakintervalidenti?edbythenoncommonbreakmodel.

4

EastEuropean)countriespriortothe2004break,buthas?attenedbymoreinthosecoun-

tries,consistentwithclearevidenceofPhillipscurveconvergenceacrosscountriesthat,earlyinoursample,usedtodisplayaverydi?erentin?ation-unemploymenttrade-o?.

WealsostudynonlinearityofthePhillipscurve,which,asnotedby

Hooperetal.

(

2020

),ismucheasiertodowithdisaggregatedatasincethenationallabormarkethasnotreallybeentightsincethelate1960s,whereasmanyindividualMSAshavehadtightlabormarketsinthistimeperiod.Sincethecurrentpolicydebateisfocusedonsuchtightvaluesofthelabormarket,regionaldataseemslikelytobehelpfulhere.WeconsiderakinkinthePhillipscurveatathresholdofunemploymentratesof5and4.2percent.

7

Usingthesethresholds,we?ndthatthePhillipscurveissteeperinatightlabormarket.

Hooperetal.

(

2020

),

Babb

andDetmeister

(

2017

)and

Leducetal.

(

2019

)also?ndthatthePhillipscurveissteeperinatightlabormarketbutdonotconsidersubsampleinstability.Ignoringbreakshasthee?ectofleadingtounderestimationoftheadditionalsteepnessintightlabormarketsinthemostrecentperiod.

Next,weexploresomeaggregateimplicationsofourPhillipscurveestimates.Ouresti-matesforboththeUSandtheEUimplyessentiallynomissingdisin?ationduringtheGreatRecessionandnomissingrein?ationduringthesubsequentrecoveryyears.Inaddition,we?ndthatasteeper(nonlinear)Phillipscurveinhotlabormarketscombinedwithahighernaturalrateofunemploymentdrivenbyunusuallystrongwagegrowth(

Crumpetal.

2022

)canexplainalmosthalfofthesurgeinU.S.in?ationbetween2020and2022.

8

Finally,weinvestigatetheimplicationsforoptimalmonetarypolicyofthebreakinthePhillipscurvearoundtheturnofthecenturyusingourMSA-levelestimates.ThebreakinducesadditionalparameteruncertaintyinourBayesianframeworkwhichcausesthecentralbanktorespondmorecautiouslytodeviationsintheunemploymentgapasthepolicymakerisuncertainaboutthelinkbetweeneconomicslackandin?ation,inlinewith

Brainard

(

1967

)’s“conservatismprinciple”thatisencapsulatedintheopeningquotefromECBPresidentChristineLagarde.Thepolicy-makercompensatesforthiscautionbyrespondingmoreaggressivelytodeviationsinin?ationfromtarget.We?ndasimilarpatternusingourEUcountry-levelestimates.Theseresultsarerelevantforrecentglobalmonetarypolicyactionsinresponsetothere-openingoftheeconomyafterthelockdownsinducedby

7Forcomparison,

StockandWatson

(2009

)de?neatightlabormarketasanunemploymentgapbelowminus1.5percentwhile

BabbandDetmeister

(2017

)usethesamethresholdsaswedo.

8Thekinked(nonlinear)Phillipscurvee?ectsareanimportantpartofthisexplanation.Interestingly,ourapproachdoesnotdetectabreakaroundtheCovidlockdown,suggestingthatthelinearPhillipscurveremainedquite?atduringthisperiod.

5

thepandemic.

Ouranalysisisrelatedtoalargebodyofresearchontime-variationinthePhillipscurve.Thisliteraturecanbedividedintotwobroadcategories.

9

The?rstapproachcapturestime-variationbyassumingthattheparametersofthePhillipscurvefollowarandomwalk(

Ball

andMazumder

2011

;

MathesonandStavrev

2013

;

Blanchard

2016

;

InoueandWang

2022

).ThesecondapproachestimatestheparametersofthePhillipscurvesubjecttoanassumptionthatbreakdatesareeitherpre-speci?edordeterminedbasedonthesinglebreakpointtestof

Andrews

(

1993

)orbasedoninformalmodelingtechniques,suchasregressionswithrollingwindows(

Roberts

2006

;

Coibionetal.

2013

;

CoibionandGorodnichenko

2015

;

Leducetal.

2017

;

BallandMazumder

2019

;

Gal′?andGambetti

2019

;

GilchristandZakrajˇsek

2019

;

DelNegroetal.

2020

;

Fitzgeraldetal.

2020

;

Hooperetal.

2020

;

CerratoandGitti

2022

;

Hazelletal.

2022

).

10

However,breaktestsconductedonunivariatetimeserieshavelowpower,makingitdi?culttodetectbreaksinthePhillipscurveonindividualin?ationseries.Exploitingtherichinformationinthecross-sectionofpaneldatasetso?erstheopportunityforincreasedpowerandourstudyisthe?rsttoformallyestimatemultiplebreaksinthePhillipscurveinthecontextofsuchpaneldata.

11

Theremainderofthepaperproceedsasfollows.Section

2

introducesthepaneldatasetsusedinouranalysiswhileSection

3

explainsourBayesianpanelapproach,includingestimation,modelselectionandchoiceofpriors.Section

4

presentsourmainempiricalresultsonbreaksintheindustryandregionalPhillipscurves,andSection

5

discussesaggregateimplicationsofourresults.Section

6

conductsasetofrobustnessexercises,whileSection

7

concludes.AdditionalempiricalresultsaredescribedinanAppendixattheendofthepaper.

2.Data

Thissectionintroducesourdataalongwiththedatasourcesusedinourempiricalanalysis.We?rstdescribeourin?ationexpectationsandaggregateunemploymentgapmeasuresbeforeexplainingthein?ationrate,unemploymentrate,andNAIRUmeasureswhichweusefortheUSMetropolitanStatisticalAreas(MSAs)andindustries,aswellasfortheEU.

9AppendixTable

A1

containsalistofsomeofthemainstudiesonvariationinthePhillipscurve.

10

BarnichonandMesters

(

2021

)useasubsamplesplittotracktime-variationinthePhillipsmultiplier.

11Allowingformultiplebreaksisalsocrucialwhenconsideringlongtimeseriessamplesforwhichstation-arityislesslikelytohold.

6

2.1.In?ationexpectations,unemploymentrates,andNAIRU

Wesourcefour-quarter-aheadConsumerPriceIndex(CPI)in?ationexpectationsfromBlueChipEconomicIndicators.Thesedatagobackto1985.Between1980and1985,weuseProducerPriceIndex(PPI)in?ationexpectationsfromthesamesource.Before1980,weusedatafromLivingstonwhichisonlyupdatedeverysixmonthsandsowesimplyrepeatobservationsinthetwocorrespondingquarters,e?ectivelyassumingthatin?ationexpecta-tionsremainthesameineach6-monthperiod.BecauseU.S.in?ationexpectationsareonlymeasuredfortheaggregatepriceindexasopposedtoattheregionalorsectorallevel,wecanonlyusethesein?ationexpectationsdatainspeci?cationswithouttime?xede?ects.

Weusetheend-of-quartermonthlyaggregateunemploymentgap,measuredasthedif-ferencebetweentheunemploymentratefromtheU.S.BureauofLaborStatistics(BLS)andtheNAIRUestimate(fromtheCongressionalBudgetO?ce).ThesedatabegininJanuary1949andendinSeptember2022.

Wesourcetheannualcountry-levelunemploymentrateandNAIRUestimatesforthe28EUmembercountries(thecurrent27plustheUKwhichwasamemberuntilrecently),andhencetheunemploymentgaps,forthesampleperiod1965-2021fromtheDGECFIN/AMECO—theEuropeanCommission’smacroeconomicdatabase.

12

Fortheregionalanalysis,weobtainannualunemploymentratedatafrom1980to2022for22MSAsfromtheBLS.Wealsousetheendofquartermonthlyunemploymentrateforall51states(includingtheDistrictofColumbia),alsoobtainedfromtheBLS.ThesedatabegininJanuary1980andendinDecember2019.

2.2.Pricedata

2.2.1.MSAlevel

WesourcemonthlytotalCPIsfor22MSAsfromtheBLS.Weconstructannuallevelsastheaverageofallmonthlyobservationsinthecorrespondingyear.

13

Next,weconstructannualin?ationratesaslog(CPIit/CPIit-1)×100inwhichCPIitdenotesthelevelfortheithMSAinyeart.

12WethankMicheleLenzaforhelpingusaccessthesecountry-levelNAIRUestimates.

13DataforallbutafewMSAsarecollectedonlyineitheroddorevenmonths.See

/opub/hom/cpi/pdf/cpi.pdffordetailsofthecompletemethodologyand

/cpi/additional-resources/geographic-sample.htm.forthegeographicde

?nitions.

7

Annualunemploymentratesareconstructedastheaverageofallmonthlyobservations

inthecorrespondingyear.Oursampleforthesedatabeginsin1980andendsin2022,butformanyMSAsthedataonlystartin1990.

2.2.2.Industrylevel

WeusequarterlyPersonalConsumptionExpenditurespriceindexes(PCE)for16industrycomponents,similartothoseanalyzedby

StockandWatson

(

2020

),sourcedfromtheBureauofEconomicAnalysis(BEA).

14

Oursampleis1959:Q1-2022:Q3.Weconstructannualizedquarterlyin?ationratesaslog(PCEi,t/PCEi,t-1)×400.

FromtheBLS,wesourcemonthlyCPIin?ationfor31“l(fā)evel3”industries,ascurrentlyformulated,beginninginJanuary1954andendinginSeptember2022,thoughnotallseriesgoallthewayback.Weconstructourannualizedquarterlyin?ationrateobservationsfromendofquartermonthlyobservationsaslog(CPIi,t/CPIi,t-3)×400.

2.3.ImpliednationalPhillipscurveslopes

Hazelletal.

(

2022

)showthattheregionalPhillipscurveslopecanbedividedbytheexpen-ditureshareonnontradeablestoobtainthenationalPhillipscurveslope.Weusethe31CPIindustryweightstocomputetheexpenditureshareonnontradeables.Wefollow

Hazelletal.

(

2022

)byassigningthefollowingseriestonontradeables:FullServiceMealsandSnacks,LimitedServiceMealsandSnacks,Foodatemployeesitesandschools,Foodfromvend-ingmachinesandmobilevendors,Otherfoodawayfromhome,Electricity,Utility(piped)gasservice,Waterandsewerandtrashcollectionservices,Householdoperations,Medicalcareservices,Transportationsservices,Recreationservices,Educationandcommunicationservices,Otherpersonalservices,andShelter.Theexpenditureshareonnontradeablesistherefore69.1percent.Doingthesameusingthe16PCEcomponentweights,theexpendi-tureshareonnontradeablesis74.3percent.

14Thetwocategories–HousingandHouseholdutilities–havesincebeenreplacedbyone:Housingandutilities.

8

2.4.Wagedata

Following

Hooperetal.

(

2020

),wedirectlycomputeaveragehourlyearnings(AHE)foreachofthe50statesandtheDistrictofColumbiausingthelatest(2019)CEPRuniformextractfromtheCurrentPopulationSurvey(CPS)

15

.Aggregatingfrommonthlydata,weconstructquarterlydatafrom1980:Q1through2019:Q4,fromwhichweconstructquarterlyannualizedwagein?ation.

2.5.EUdata

Wesourceheadline(aswellastotalgoodsandtotalservices)annualin?ationratesforour28countries(the27currentmembersandtheUK)fromtheECBstatisticalwarehouse.Oursamplebeginsin1986andendsin2021.

2.6.Groupstructure

Wewillbeinterestedingroupheterogeneity,witheitherthegroupallocationimposedac-cordingtopre-determinedselectioncriteria,ordeterminedbytheBayesianalgorithmaspartoftheestimationprocess.

The16PCEsectorsaresplitintogoods–Motorvehiclesandparts,Furnishingsanddurablehouseholdequipment,Recreationalgoodsandvehicles,Otherdurablegoods,Foodandbeveragespurchasedforo?-premisesconsumption,Clothingandfootwear,Gasolineandotherenergygoods,andOthernondurablegoods–andservices–Housingandutilities,Healthcare,Transportationservices,Recreationservices,Foodservicesandaccommoda-tions,Financialservicesandinsurance,Otherservices,andNPISH.

Wealsosplitthe28EUcountriesintorichandpoorcountrieswithrichcountriesde?nedascountrieswithrealGDPpercapitade?atedbyPPPin2019abovetheEUaverageandpoorcountriesde?nedastherest.TherichcountriesincludeLuxembourg,Ireland,Denmark,Netherlands,Austria,Germany,Sweden,Belgium,Finland,France,andUK.

16

15Thedataareavailablefrom/cps-uniform-data-extracts/.

16ThepoorcountriesthereforeincludeMalta,Italy,CzechRepublic,Spain,Cyprus,Slovenia,Slovakia,Romania,Portugal,Poland,Bulgaria,Estonia,Lithuania,Latvia,Hungary,Greece,andCroatia.

9

3.Methodology

Ouranalysisexaminesthreedi?erentBayesianpanelspeci?cations.The?rstisourbase-linepooledpanelmodelwithmultiplebreakpoints.Thi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論