




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
NBERWORKINGPAPERSERIES
BREAKSINTHEPHILLIPSCURVE:
EVIDENCEFROMPANELDATA
SimonSmith
AllanTimmermann
JonathanH.Wright
WorkingPaper31153
/papers/w31153
NATIONALBUREAUOFECONOMICRESEARCH
1050MassachusettsAvenue
Cambridge,MA02138
April2023
Wehavenothingtodisclose.TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauofEconomicResearch.
NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.
?2023bySimonSmith,AllanTimmermann,andJonathanH.Wright.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including?notice,isgiventothesource.
BreaksinthePhillipsCurve:EvidencefromPanelData
SimonSmith,AllanTimmermann,andJonathanH.Wright
NBERWorkingPaperNo.31153
April2023
JELNo.C11,C22,E51,E52
ABSTRACT
Werevisittime-variationinthePhillipscurve,applyingnewBayesianpanelmethodswithbreakpointstoUSandEuropeanUniondisaggregatedata.OurapproachallowsustoaccuratelyestimateboththenumberandtimingofbreaksinthePhillipscurve.Itfurtherallowsustodeterminetheexistenceofclustersofindustries,cities,orcountrieswhosePhillipscurvesdisplaysimilarpatternsofinstabilityandtoexaminelead-lagpatternsinhowindividualinflationserieschange.WefindevidenceofamarkedflatteninginthePhillipscurvesforUSsectoraldataandamongEUcountries,particularlypoorerones.Conversely,evidenceofaflatteningisweakerforMSA-leveldataandforthewagePhillipscurve.USregionaldataandEUdatapointtoakinkinthepricePhillipscurvewhichremainsrelativelysteepwhentheeconomyisrunninghot.
SimonSmithJonathanH.Wright
simon.c.smith@DepartmentofEconomics
JohnsHopkinsUniversity
AllanTimmermann3400N.CharlesStreet
DepartmentofEconomicsBaltimore,MD21218
UniversityofCaliforniaandNBER
LaJolla,CA92093-0508wrightj@
andCEPR
atimmermann@
1
1.Introduction
“Therewasatimewheretherewasatightconnectionbetweenunemploymentandin?ation.Thattimeislonggone.”(JeromePowell,2021.)
1
“...gradualismisawell-establishedprincipleforcentralbanksintimesofuncertainty.Whenfacedwithuncertaintyabouttheresilienceoftheeconomy,itpaystomovecarefully.”(ChristineLagarde,2022.)
2
ThePhillipscurveisakeyelementofthenewKeynesianmacroeconomicmodelandiscriticalinhowcentralbanksthinkofthemacroeconomy.Recentlytherehasbeenmuchdebateaboutapotential?atteningofthePhillipscurve,whichcould,inturn,hinderthecentralbanks’abilitytocontrolin?ation.ThegoalofthispaperistoapplyBayesianpanelmethodswithbreakpointstodisaggregatedatainordertorevisittimevariationintheslopeofthePhillipscurve.
Thereareanumberofmotivationsforlookingatdisaggregatedata,whetherbyindus-try,byregion,orbycountry.First,theremaybesomecross-sectionalheterogeneitywhichmightshedlightonthecausesofchangingPhillipscurves.Second,sincedi?erentregionsandsectorsexperiencedi?erentbusinesscycles,thereisextrainformationindisaggregatedatathatenablesustoidentifyslopecoe?cientsandregimechangesmorepreciselythanusingaggregatedataalone.Forexample,
Baietal.
(
1998
)and
SmithandTimmermann
(
2021
)arguethatpaneldataimposingcommontimingofbreaksincreasestheprecisionofbreakdateestimates,evenwhenthee?ectofsuchbreaksisallowedtovaryacrossindividualunitsorvariables.Third,severalrecentpapers(e.g.
Hooperetal.
(
2020
),
Fitzgeraldetal.
(
2020
)and
McLeayandTenreyro
(
2020
))havepointedoutthatifthecentralbankissuc-cessfullytargetingin?ation,thenthiscreatesanendogeneitybiasintheslopeofthePhillipscurve,biasingthecoe?cienttowardszero.Theuseofdisaggregatedatainconjunctionwiththeinclusionoftime?xede?ectsavoidsthisproblem,becausethecentralbankdoesnotspeci?callytargetin?ationinanyoneparticularregionorsector.
3
1ThisquoteisfromFederalReserveChairJeromePowell’spressConference,March17,2021;
/mediacenter/
?les/FOMCpresconf20210317.pdf.
2Thisquoteistakenfromthespeech“Monetarypolicyinanuncertainworld”byChristineLagarde,PresidentoftheECB,at“TheECBandItsWatchersXXIIconference,17March2022.”
3Theproblemwouldnotbesolvedwithdisaggregatedatawithouttime?xede?ects,becauseinthatcasesomeoftheidenti?cationwouldcomefromthetimeseriesdimensionwherethereisendogeneity.
2
Buildingontheseinsights,inthispaperweapplyrecentBayesianpanelbreakmethodstostudyPhillipscurvein?ationdynamics.OurBayesianpanelbreakapproachestimatesthenumberofbreakstothePhillipscurveandthetimeoftheiroccurrence(location).Further,itendogenouslyidenti?esclustersofin?ationserieswithcommonPhillipscurvesandforwhichtheimpactofbreaksissimilar.ThelatterfeatureallowsustoexamineevidenceofconvergenceinPhillipscurves.Finally,ourapproachallowsustoidentifylead-lage?ectsinthetimingbywhichindividualin?ationseriesgeta?ectedbybreaks.
ExistingworkonestimatingPhillipscurvesinpanelsofdisaggregatedatamostlyimposestherestrictionofacommonslopecoe?cient.AnalternativeistoestimatethePhillipscurveforeachindustryorregionseparately,butthisgivesupalotofinformationandtestsconductedonunivariatePhillipscurvemodelsgenerallylacksu?cientpowertodetectbreaksortoestimatetheirdatesprecisely.Anadvantageofourapproachisthatwecantakeamiddleground,anddopartialpooling,whileallowingforsomecross-sectionalvariationintheslopecoe?cients.Forexample,ourmethodologyallowsustoconsidergroupingsbyindustryorgeographicregion,withdi?erentslopecoe?cientsapplyingtoeachgroup.Wecanimposethegroupingsapriori,orthegroupingstructurecanbeestimatedaspartofthemodelingprocess.IfthedatasupportahomogeneousPhillipscurvethatisidenticalacrossallunits,onlyasinglegroupwillbeidenti?ed.Conversely,verystrongheterogeneityinPhillipscurvesacrossindustriesorregionswillleadtoamodelinwhicheachgroupcomprisesasingleunit.Ourmethodologyendogenouslydetermineswhetheranyofthesespecialcasesoranintermediatescenariowithmultipleunitsineachcluster,issupportedbythedata,thusadaptingtothedegreeofheterogeneityfoundinthedata.
ThefocusofouranalysisisonunderstandinghowthePhillipscurvehaschangedovertimeandidentifyingpossibledriversofsuchchange.Acomplexsetoffactorscouldbeatplay,includingchangesinunionizationandwageindexation,exposuretointernationaltrade,andeveneconomicintegration.TheimpactofbreakstothePhillipscurveis,therefore,likelytodependontheunitatwhichin?ationismeasured.Tohelpidentifythesedrivers,wethereforeapplyourestimationapproachtoavarietyofdatasets.Speci?cally,weconsiderUSpricePhillipscurvesusingdisaggregationattheindustryandMSAlevel,andtowagePhillipscurvesatthestatelevel.WealsoexaminePhillipscurvesatthecountrylevelwithintheEuropeanUnion.
Turningtotheempiricalresults,inUSindustrydatacoveringthesample1959Q1-2022Q3,we?ndtworegimechangesinthePhillipscurve;asteepeningaround1972anda?atteningin2001.Moreover,therecent?atteningofthePhillipscurveismorepronouncedforgoods
3
pricesthanforservicesprices.Thesteepeningaround1972comesafteraperiodwhenin?ationhadbeentrendingupforsomeyearsandwhenindexationofwagecontracts,eitherimplicitorexplicit,becamemorecommon.ThiswouldinturnsteepenthePhillipscurve.Meanwhile,thesubsequent?atteningcorrespondstoatimeofgreaterimportpenetration,especiallyfromChina,withChinajoiningtheWorldTradeOrganizationin2001.
4
WhileeconomicintuitionmightsuggestthatchangestotheslopeofthePhillipscurvewouldoccurgradually,China’saccessiontotheWTOmayhavecausedmoreofasuddenbreakwithquitesharpe?ectsdocumentedinstudiessuchas
BenaandSimintzi
(
2022
).Decliningunionizationandthefactthatin?ationisstableatalowlevelcreatinglessofaneedforpayingattentiontoin?ationinwagesettingareotherpossibleexplanationsforthe?atteningofthePhillipscurve.
5
Theseregimechangesthatwedetectareconsistentwithsomeoftheexistingliterature(e.g.
Hooperetal.
(
2020
)),although
Hazelletal.
(
2022
)argueusingstateleveldatathatthePhillipscurvehasbeenconsistently?at.
Ournon-commonbreakestimatessuggestthatthe?rstbreaktothePhillipscurvebasedontheindustry-levelPCEseriesoccursbetween1972and1973whilethebreaktothePhillipscurvebasedontheCPIseriesoccursbetween1971and1974.Asecondbreakoccursbetween
2001and2002.Inbothcases,thetimingofthebreaksis,thus,quitepreciselyestimated.
6
USregional(MSA)dataarenotavailableasfarbackintime,spanningtheshortersample1980-2022.ThismeansthatwecannotexaminethepresenceofPhillipscurvebreaksinthe70sforthisdata.Still,evenwiththisshortersamplecoverage,wemanagetoidentifyaregimechangearound2000.Further,we?ndagainthatMSAswithabove(below)medianratesofimportpenetrationfromChinahaveexperiencedaconsiderablystronger(weaker)?atteningoftheirpricePhillipscurve.These?ndingsareconsistentwithmoregoodscompetitionfromChinaexplainingapartofthe?atteningofthepricePhillipscurve.
BroadlysimilarpatternsarefoundintheEUforasamplethatbeginsin1986andendsin2021.Forthisdatawe?ndevidenceofasinglebreakwhichweestimateoccursin2004atwhichpointtheslopeofthePhillipscurve?attenssigni?cantly.Usingourclusteringmethodology,we?ndthatthePhillipscurveusedtobeparticularlysteepinpoorer(mostly
4
Aueretal.
(
2017
),
StockandWatson
(
2020
),
GilchristandZakrajˇsek
(2019
)and
Firat
(2020
)allshowhowgreatertradeopennesscan?attenthePhillipscurve.
5Whilewedo?nda?atteningbreakinthewagePhillipscurve(estimatedoverthesample1980Q1-2019Q4),itisofsmallermagnitudethanforthepricePhillipscurve,anditcomesin1989,earlierthanwe?ndwithmostpricedata.
6Thecommonbreakapproachcanbeviewedasasimpli?cationthatplacesthebreaktothePhillipscurveatagivendatewithinthebreakintervalidenti?edbythenoncommonbreakmodel.
4
EastEuropean)countriespriortothe2004break,buthas?attenedbymoreinthosecoun-
tries,consistentwithclearevidenceofPhillipscurveconvergenceacrosscountriesthat,earlyinoursample,usedtodisplayaverydi?erentin?ation-unemploymenttrade-o?.
WealsostudynonlinearityofthePhillipscurve,which,asnotedby
Hooperetal.
(
2020
),ismucheasiertodowithdisaggregatedatasincethenationallabormarkethasnotreallybeentightsincethelate1960s,whereasmanyindividualMSAshavehadtightlabormarketsinthistimeperiod.Sincethecurrentpolicydebateisfocusedonsuchtightvaluesofthelabormarket,regionaldataseemslikelytobehelpfulhere.WeconsiderakinkinthePhillipscurveatathresholdofunemploymentratesof5and4.2percent.
7
Usingthesethresholds,we?ndthatthePhillipscurveissteeperinatightlabormarket.
Hooperetal.
(
2020
),
Babb
andDetmeister
(
2017
)and
Leducetal.
(
2019
)also?ndthatthePhillipscurveissteeperinatightlabormarketbutdonotconsidersubsampleinstability.Ignoringbreakshasthee?ectofleadingtounderestimationoftheadditionalsteepnessintightlabormarketsinthemostrecentperiod.
Next,weexploresomeaggregateimplicationsofourPhillipscurveestimates.Ouresti-matesforboththeUSandtheEUimplyessentiallynomissingdisin?ationduringtheGreatRecessionandnomissingrein?ationduringthesubsequentrecoveryyears.Inaddition,we?ndthatasteeper(nonlinear)Phillipscurveinhotlabormarketscombinedwithahighernaturalrateofunemploymentdrivenbyunusuallystrongwagegrowth(
Crumpetal.
2022
)canexplainalmosthalfofthesurgeinU.S.in?ationbetween2020and2022.
8
Finally,weinvestigatetheimplicationsforoptimalmonetarypolicyofthebreakinthePhillipscurvearoundtheturnofthecenturyusingourMSA-levelestimates.ThebreakinducesadditionalparameteruncertaintyinourBayesianframeworkwhichcausesthecentralbanktorespondmorecautiouslytodeviationsintheunemploymentgapasthepolicymakerisuncertainaboutthelinkbetweeneconomicslackandin?ation,inlinewith
Brainard
(
1967
)’s“conservatismprinciple”thatisencapsulatedintheopeningquotefromECBPresidentChristineLagarde.Thepolicy-makercompensatesforthiscautionbyrespondingmoreaggressivelytodeviationsinin?ationfromtarget.We?ndasimilarpatternusingourEUcountry-levelestimates.Theseresultsarerelevantforrecentglobalmonetarypolicyactionsinresponsetothere-openingoftheeconomyafterthelockdownsinducedby
7Forcomparison,
StockandWatson
(2009
)de?neatightlabormarketasanunemploymentgapbelowminus1.5percentwhile
BabbandDetmeister
(2017
)usethesamethresholdsaswedo.
8Thekinked(nonlinear)Phillipscurvee?ectsareanimportantpartofthisexplanation.Interestingly,ourapproachdoesnotdetectabreakaroundtheCovidlockdown,suggestingthatthelinearPhillipscurveremainedquite?atduringthisperiod.
5
thepandemic.
Ouranalysisisrelatedtoalargebodyofresearchontime-variationinthePhillipscurve.Thisliteraturecanbedividedintotwobroadcategories.
9
The?rstapproachcapturestime-variationbyassumingthattheparametersofthePhillipscurvefollowarandomwalk(
Ball
andMazumder
2011
;
MathesonandStavrev
2013
;
Blanchard
2016
;
InoueandWang
2022
).ThesecondapproachestimatestheparametersofthePhillipscurvesubjecttoanassumptionthatbreakdatesareeitherpre-speci?edordeterminedbasedonthesinglebreakpointtestof
Andrews
(
1993
)orbasedoninformalmodelingtechniques,suchasregressionswithrollingwindows(
Roberts
2006
;
Coibionetal.
2013
;
CoibionandGorodnichenko
2015
;
Leducetal.
2017
;
BallandMazumder
2019
;
Gal′?andGambetti
2019
;
GilchristandZakrajˇsek
2019
;
DelNegroetal.
2020
;
Fitzgeraldetal.
2020
;
Hooperetal.
2020
;
CerratoandGitti
2022
;
Hazelletal.
2022
).
10
However,breaktestsconductedonunivariatetimeserieshavelowpower,makingitdi?culttodetectbreaksinthePhillipscurveonindividualin?ationseries.Exploitingtherichinformationinthecross-sectionofpaneldatasetso?erstheopportunityforincreasedpowerandourstudyisthe?rsttoformallyestimatemultiplebreaksinthePhillipscurveinthecontextofsuchpaneldata.
11
Theremainderofthepaperproceedsasfollows.Section
2
introducesthepaneldatasetsusedinouranalysiswhileSection
3
explainsourBayesianpanelapproach,includingestimation,modelselectionandchoiceofpriors.Section
4
presentsourmainempiricalresultsonbreaksintheindustryandregionalPhillipscurves,andSection
5
discussesaggregateimplicationsofourresults.Section
6
conductsasetofrobustnessexercises,whileSection
7
concludes.AdditionalempiricalresultsaredescribedinanAppendixattheendofthepaper.
2.Data
Thissectionintroducesourdataalongwiththedatasourcesusedinourempiricalanalysis.We?rstdescribeourin?ationexpectationsandaggregateunemploymentgapmeasuresbeforeexplainingthein?ationrate,unemploymentrate,andNAIRUmeasureswhichweusefortheUSMetropolitanStatisticalAreas(MSAs)andindustries,aswellasfortheEU.
9AppendixTable
A1
containsalistofsomeofthemainstudiesonvariationinthePhillipscurve.
10
BarnichonandMesters
(
2021
)useasubsamplesplittotracktime-variationinthePhillipsmultiplier.
11Allowingformultiplebreaksisalsocrucialwhenconsideringlongtimeseriessamplesforwhichstation-arityislesslikelytohold.
6
2.1.In?ationexpectations,unemploymentrates,andNAIRU
Wesourcefour-quarter-aheadConsumerPriceIndex(CPI)in?ationexpectationsfromBlueChipEconomicIndicators.Thesedatagobackto1985.Between1980and1985,weuseProducerPriceIndex(PPI)in?ationexpectationsfromthesamesource.Before1980,weusedatafromLivingstonwhichisonlyupdatedeverysixmonthsandsowesimplyrepeatobservationsinthetwocorrespondingquarters,e?ectivelyassumingthatin?ationexpecta-tionsremainthesameineach6-monthperiod.BecauseU.S.in?ationexpectationsareonlymeasuredfortheaggregatepriceindexasopposedtoattheregionalorsectorallevel,wecanonlyusethesein?ationexpectationsdatainspeci?cationswithouttime?xede?ects.
Weusetheend-of-quartermonthlyaggregateunemploymentgap,measuredasthedif-ferencebetweentheunemploymentratefromtheU.S.BureauofLaborStatistics(BLS)andtheNAIRUestimate(fromtheCongressionalBudgetO?ce).ThesedatabegininJanuary1949andendinSeptember2022.
Wesourcetheannualcountry-levelunemploymentrateandNAIRUestimatesforthe28EUmembercountries(thecurrent27plustheUKwhichwasamemberuntilrecently),andhencetheunemploymentgaps,forthesampleperiod1965-2021fromtheDGECFIN/AMECO—theEuropeanCommission’smacroeconomicdatabase.
12
Fortheregionalanalysis,weobtainannualunemploymentratedatafrom1980to2022for22MSAsfromtheBLS.Wealsousetheendofquartermonthlyunemploymentrateforall51states(includingtheDistrictofColumbia),alsoobtainedfromtheBLS.ThesedatabegininJanuary1980andendinDecember2019.
2.2.Pricedata
2.2.1.MSAlevel
WesourcemonthlytotalCPIsfor22MSAsfromtheBLS.Weconstructannuallevelsastheaverageofallmonthlyobservationsinthecorrespondingyear.
13
Next,weconstructannualin?ationratesaslog(CPIit/CPIit-1)×100inwhichCPIitdenotesthelevelfortheithMSAinyeart.
12WethankMicheleLenzaforhelpingusaccessthesecountry-levelNAIRUestimates.
13DataforallbutafewMSAsarecollectedonlyineitheroddorevenmonths.See
/opub/hom/cpi/pdf/cpi.pdffordetailsofthecompletemethodologyand
/cpi/additional-resources/geographic-sample.htm.forthegeographicde
?nitions.
7
Annualunemploymentratesareconstructedastheaverageofallmonthlyobservations
inthecorrespondingyear.Oursampleforthesedatabeginsin1980andendsin2022,butformanyMSAsthedataonlystartin1990.
2.2.2.Industrylevel
WeusequarterlyPersonalConsumptionExpenditurespriceindexes(PCE)for16industrycomponents,similartothoseanalyzedby
StockandWatson
(
2020
),sourcedfromtheBureauofEconomicAnalysis(BEA).
14
Oursampleis1959:Q1-2022:Q3.Weconstructannualizedquarterlyin?ationratesaslog(PCEi,t/PCEi,t-1)×400.
FromtheBLS,wesourcemonthlyCPIin?ationfor31“l(fā)evel3”industries,ascurrentlyformulated,beginninginJanuary1954andendinginSeptember2022,thoughnotallseriesgoallthewayback.Weconstructourannualizedquarterlyin?ationrateobservationsfromendofquartermonthlyobservationsaslog(CPIi,t/CPIi,t-3)×400.
2.3.ImpliednationalPhillipscurveslopes
Hazelletal.
(
2022
)showthattheregionalPhillipscurveslopecanbedividedbytheexpen-ditureshareonnontradeablestoobtainthenationalPhillipscurveslope.Weusethe31CPIindustryweightstocomputetheexpenditureshareonnontradeables.Wefollow
Hazelletal.
(
2022
)byassigningthefollowingseriestonontradeables:FullServiceMealsandSnacks,LimitedServiceMealsandSnacks,Foodatemployeesitesandschools,Foodfromvend-ingmachinesandmobilevendors,Otherfoodawayfromhome,Electricity,Utility(piped)gasservice,Waterandsewerandtrashcollectionservices,Householdoperations,Medicalcareservices,Transportationsservices,Recreationservices,Educationandcommunicationservices,Otherpersonalservices,andShelter.Theexpenditureshareonnontradeablesistherefore69.1percent.Doingthesameusingthe16PCEcomponentweights,theexpendi-tureshareonnontradeablesis74.3percent.
14Thetwocategories–HousingandHouseholdutilities–havesincebeenreplacedbyone:Housingandutilities.
8
2.4.Wagedata
Following
Hooperetal.
(
2020
),wedirectlycomputeaveragehourlyearnings(AHE)foreachofthe50statesandtheDistrictofColumbiausingthelatest(2019)CEPRuniformextractfromtheCurrentPopulationSurvey(CPS)
15
.Aggregatingfrommonthlydata,weconstructquarterlydatafrom1980:Q1through2019:Q4,fromwhichweconstructquarterlyannualizedwagein?ation.
2.5.EUdata
Wesourceheadline(aswellastotalgoodsandtotalservices)annualin?ationratesforour28countries(the27currentmembersandtheUK)fromtheECBstatisticalwarehouse.Oursamplebeginsin1986andendsin2021.
2.6.Groupstructure
Wewillbeinterestedingroupheterogeneity,witheitherthegroupallocationimposedac-cordingtopre-determinedselectioncriteria,ordeterminedbytheBayesianalgorithmaspartoftheestimationprocess.
The16PCEsectorsaresplitintogoods–Motorvehiclesandparts,Furnishingsanddurablehouseholdequipment,Recreationalgoodsandvehicles,Otherdurablegoods,Foodandbeveragespurchasedforo?-premisesconsumption,Clothingandfootwear,Gasolineandotherenergygoods,andOthernondurablegoods–andservices–Housingandutilities,Healthcare,Transportationservices,Recreationservices,Foodservicesandaccommoda-tions,Financialservicesandinsurance,Otherservices,andNPISH.
Wealsosplitthe28EUcountriesintorichandpoorcountrieswithrichcountriesde?nedascountrieswithrealGDPpercapitade?atedbyPPPin2019abovetheEUaverageandpoorcountriesde?nedastherest.TherichcountriesincludeLuxembourg,Ireland,Denmark,Netherlands,Austria,Germany,Sweden,Belgium,Finland,France,andUK.
16
15Thedataareavailablefrom/cps-uniform-data-extracts/.
16ThepoorcountriesthereforeincludeMalta,Italy,CzechRepublic,Spain,Cyprus,Slovenia,Slovakia,Romania,Portugal,Poland,Bulgaria,Estonia,Lithuania,Latvia,Hungary,Greece,andCroatia.
9
3.Methodology
Ouranalysisexaminesthreedi?erentBayesianpanelspeci?cations.The?rstisourbase-linepooledpanelmodelwithmultiplebreakpoints.Thi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東地區(qū)中考道德與法治模擬試卷附答案
- 招商地產-天津市房地產市場信息月報
- 2025廣州標準商鋪租賃合同樣本
- 2025集體林地承包合同
- 2025健身房租賃合同
- 2025關于二手房買賣合同的范本
- 全市民政半年工作會議總結
- 《2025標準:合同解除勞動合同范本協(xié)議書》
- 家禽養(yǎng)殖購銷合同書
- 2024北京清華附中高一(下)期中語文試題及答案
- 2023年運行值長題庫
- 高中英語選詞填空真題匯總及答案
- GB/T 11982.2-2015聚氯乙烯卷材地板第2部分:同質聚氯乙烯卷材地板
- 品管圈PDCA循環(huán)在搶救車管理中的運用成品課件
- 移動設備小型設備施工方案
- 耳鼻咽喉科學之喉科學課件
- 臨床思維診療訓練系統(tǒng)參數(shù)
- 專業(yè)技術職務聘任表
- 揚州市巡游出租汽車駕駛員從業(yè)資格區(qū)域科目考試題庫(含答案)
- DB37-T 3466-2018人民防空工程防護(化)設備維護保養(yǎng)規(guī)程
- 湖北省黃岡市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
評論
0/150
提交評論