第測量誤差的基本知識演示文稿_第1頁
第測量誤差的基本知識演示文稿_第2頁
第測量誤差的基本知識演示文稿_第3頁
第測量誤差的基本知識演示文稿_第4頁
第測量誤差的基本知識演示文稿_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第測量誤差的基本知識演示文稿17五月20231合肥工業(yè)大學(xué)土木與水利工程學(xué)院測量工程系目前一頁\總數(shù)四十六頁\編于十八點(diǎn)17五月20232合肥工業(yè)大學(xué)土木與水利工程學(xué)院測量工程系(優(yōu)選)第測量誤差的基本知識目前二頁\總數(shù)四十六頁\編于十八點(diǎn)

◆測量與觀測值

◆觀測與觀測值的分類

●觀測條件

●等精度觀測和不等精度觀測

●直接觀測和間接觀測

●獨(dú)立觀測和非獨(dú)立觀測§6.1測量誤差概述目前三頁\總數(shù)四十六頁\編于十八點(diǎn)§6.1測量誤差概述

◆測量誤差及其來源●測量誤差的來源(1)儀器誤差:儀器精度的局限、軸系殘余誤差等。(2)人為誤差:判斷力和分辨率的限制、經(jīng)驗(yàn)等。(3)外界條件的影響:溫度變化、風(fēng)、大氣折光等

測量誤差的表現(xiàn)形式

測量誤差(真誤差=觀測值-真值)(觀測值與真值之差)(觀測值與觀測值之差)目前四頁\總數(shù)四十六頁\編于十八點(diǎn)例:誤差處理方法

鋼尺尺長誤差ld

計(jì)算改正鋼尺溫度誤差lt

計(jì)算改正

水準(zhǔn)儀視準(zhǔn)軸誤差I(lǐng)

操作時(shí)抵消(前后視等距)

經(jīng)緯儀視準(zhǔn)軸誤差C操作時(shí)抵消(盤左盤右取平均)

……

……2.系統(tǒng)誤差

——

誤差出現(xiàn)的大小、符號相同,或按規(guī)律性變化,具有積累性?!裣到y(tǒng)誤差可以消除或減弱。

(計(jì)算改正、觀測方法、儀器檢校)測量誤差分為:粗差、系統(tǒng)誤差和偶然誤差§6.2測量誤差的種類1.粗差(錯(cuò)誤)——超限的誤差目前五頁\總數(shù)四十六頁\編于十八點(diǎn)3.偶然誤差——誤差出現(xiàn)的大小、符號各不相同,表面看無規(guī)律性。

例:估讀數(shù)、氣泡居中判斷、瞄準(zhǔn)、對中等誤差,導(dǎo)致觀測值產(chǎn)生誤差。

●準(zhǔn)確度(測量成果與真值的差異)

●最或是值(最接近真值的估值,最可靠值)

●測量平差(求解最或是值并評定精度)4.幾個(gè)概念:

●精(密)度(觀測值之間的離散程度)目前六頁\總數(shù)四十六頁\編于十八點(diǎn)舉例:

在某測區(qū),等精度觀測了358個(gè)三角形的內(nèi)角之和,得到358個(gè)三角形閉合差i(偶然誤差,也即真誤差)

,然后對三角形閉合差i

進(jìn)行分析。

分析結(jié)果表明,當(dāng)觀測次數(shù)很多時(shí),偶然誤差的出現(xiàn),呈現(xiàn)出統(tǒng)計(jì)學(xué)上的規(guī)律性。而且,觀測次數(shù)越多,規(guī)律性越明顯?!?.3偶然誤差的特性目前七頁\總數(shù)四十六頁\編于十八點(diǎn)目前八頁\總數(shù)四十六頁\編于十八點(diǎn)用頻率直方圖表示的偶然誤差統(tǒng)計(jì):頻率直方圖的中間高、兩邊低,并向橫軸逐漸逼近,對稱于y軸。頻率直方圖中,每一條形的面積表示誤差出現(xiàn)在該區(qū)間的頻率k/n,而所有條形的總面積等于1。各條形頂邊中點(diǎn)連線經(jīng)光滑后的曲線形狀,表現(xiàn)出偶然誤差的普遍規(guī)律

圖6-1誤差統(tǒng)計(jì)直方圖目前九頁\總數(shù)四十六頁\編于十八點(diǎn)◆從誤差統(tǒng)計(jì)表和頻率直方圖中,可以歸納出偶然誤差的四個(gè)特性:特性(1)、(2)、(3)決定了特性(4),特性(4)具有實(shí)用意義。

3.偶然誤差的特性(1)在一定的觀測條件下,偶然誤差的絕對值不會超過一定的限值(有界性);(2)絕對值小的誤差比絕對值大的誤差出現(xiàn)的機(jī)會多(趨向性);(3)絕對值相等的正誤差和負(fù)誤差出現(xiàn)的機(jī)會相等(對稱性);(4)當(dāng)觀測次數(shù)無限增加時(shí),偶然誤差的算術(shù)平均值趨近于零

(抵償性):目前十頁\總數(shù)四十六頁\編于十八點(diǎn)偶然誤差具有正態(tài)分布的特性當(dāng)觀測次數(shù)n無限增多(n→∞)、誤差區(qū)間d無限縮小(d→0)時(shí),各矩形的頂邊就連成一條光滑的曲線,這條曲線稱為“正態(tài)分布曲線”,又稱為“高斯誤差分布曲線”。所以偶然誤差具有正態(tài)分布的特性。圖6-1誤差統(tǒng)計(jì)直方圖目前十一頁\總數(shù)四十六頁\編于十八點(diǎn)1.方差與標(biāo)準(zhǔn)差

由正態(tài)分布密度函數(shù)式中、為常數(shù);

=2.72828…x=y正態(tài)分布曲線(a=0)令:,上式為:§6.4衡量精度的指標(biāo)目前十二頁\總數(shù)四十六頁\編于十八點(diǎn)標(biāo)準(zhǔn)差的數(shù)學(xué)意義表示的離散程度x=y較小較大稱為標(biāo)準(zhǔn)差:上式中,稱為方差:目前十三頁\總數(shù)四十六頁\編于十八點(diǎn)測量工作中,用中誤差作為衡量觀測值精度的標(biāo)準(zhǔn)。中誤差:觀測次數(shù)無限多時(shí),用標(biāo)準(zhǔn)差表示偶然誤差的離散情形:上式中,偶然誤差為觀測值與真值X之差:觀測次數(shù)n有限時(shí),用中誤差m表示偶然誤差的離散情形:i=i-

X目前十四頁\總數(shù)四十六頁\編于十八點(diǎn)目前十五頁\總數(shù)四十六頁\編于十八點(diǎn)

m1小于m2,說明第一組觀測值的誤差分布比較集中,其精度較高;相對地,第二組觀測值的誤差分布比較離散,其精度較低:

m1=2.7是第一組觀測值的中誤差;

m2=3.6是第二組觀測值的中誤差。目前十六頁\總數(shù)四十六頁\編于十八點(diǎn)2.容許誤差(極限誤差)

根據(jù)誤差分布的密度函數(shù),誤差出現(xiàn)在微分區(qū)間d內(nèi)的概率為:誤差出現(xiàn)在K倍中誤差區(qū)間內(nèi)的概率為:

將K=1、2、3分別代入上式,可得到偶然誤差分別出現(xiàn)在一倍、二倍、三倍中誤差區(qū)間內(nèi)的概率:

P(||m)=0.683=68.3P(||2m)=0.954=95.4P(||3m)=0.997=99.7測量中,一般取兩倍中誤差(2m)作為容許誤差,也稱為限差:|容|=3|m|或|容|=2|m|目前十七頁\總數(shù)四十六頁\編于十八點(diǎn)

3.相對誤差(相對中誤差)

——誤差絕對值與觀測量之比。

用于表示距離的精度。用分子為1的分?jǐn)?shù)表示。分?jǐn)?shù)值較小相對精度較高;分?jǐn)?shù)值較大相對精度較低。

K2<K1,所以距離S2精度較高。例2:用鋼尺丈量兩段距離分別得S1=100米,m1=0.02m;

S2=200米,m2=0.02m。計(jì)算S1、S2的相對誤差。

0.0210.021

K1=——=——;K2=——=——

100500020010000解:目前十八頁\總數(shù)四十六頁\編于十八點(diǎn)一.一般函數(shù)的中誤差令的系數(shù)為,(c)式為:由于和是一個(gè)很小的量,可代替上式中的和:

(c)代入(b)得對(a)全微分:(b)設(shè)有函數(shù):為獨(dú)立觀測值設(shè)有真誤差,函數(shù)也產(chǎn)生真誤差(a)§6.5誤差傳播定律目前十九頁\總數(shù)四十六頁\編于十八點(diǎn)對Z觀測了k次,有k個(gè)式(d)對(d)式中的一個(gè)式子取平方:(i,j=1~n且i≠j)(e)對K個(gè)(e)式取總和:(f)目前二十頁\總數(shù)四十六頁\編于十八點(diǎn)(f)(f)式兩邊除以K,得(g)式:(g)由偶然誤差的抵償性知:(g)式最后一項(xiàng)極小于前面各項(xiàng),可忽略不計(jì),則:<<前面各項(xiàng)即(h)目前二十一頁\總數(shù)四十六頁\編于十八點(diǎn)(h)考慮,代入上式,得中誤差關(guān)系式:(6-10)上式為一般函數(shù)的中誤差公式,也稱為誤差傳播定律。目前二十二頁\總數(shù)四十六頁\編于十八點(diǎn)

通過以上誤差傳播定律的推導(dǎo),我們可以總結(jié)出求觀測值函數(shù)中誤差的步驟:

1.列出函數(shù)式;

2.對函數(shù)式求全微分;

3.套用誤差傳播定律,寫出中誤差公式。目前二十三頁\總數(shù)四十六頁\編于十八點(diǎn)1.倍數(shù)函數(shù)的中誤差

設(shè)有函數(shù)式(x為觀測值,K為x的系數(shù))全微分得中誤差式例:量得地形圖上兩點(diǎn)間長度=168.5mm0.2mm,計(jì)算該兩點(diǎn)實(shí)地距離S及其中誤差ms解:列函數(shù)式求全微分中誤差式二.幾種常用函數(shù)的中誤差

目前二十四頁\總數(shù)四十六頁\編于十八點(diǎn)2.線性函數(shù)的中誤差

設(shè)有函數(shù)式

全微分

中誤差式例:設(shè)有某線性函數(shù)其中

、

、分別為獨(dú)立觀測值,它們的中誤差分別為求Z的中誤差。解:對上式全微分:由中誤差式得:目前二十五頁\總數(shù)四十六頁\編于十八點(diǎn)

函數(shù)式全微分中誤差式3.算術(shù)平均值的中誤差式

由于等精度觀測時(shí),,代入上式:得由此可知,算術(shù)平均值的中誤差比觀測值的中誤差縮小了倍。

●對某觀測量進(jìn)行多次觀測(多余觀測)取平均,是提高觀測成果精度最有效的方法。目前二十六頁\總數(shù)四十六頁\編于十八點(diǎn)4.和或差函數(shù)的中誤差

函數(shù)式:

全微分:

中誤差式:當(dāng)?shù)染扔^測時(shí):上式可寫成:例:測定A、B間的高差,共連續(xù)測了9站。設(shè)測量每站高差的中誤差,求總高差的中誤差。

解:

目前二十七頁\總數(shù)四十六頁\編于十八點(diǎn)觀測值函數(shù)中誤差公式匯總

觀測值函數(shù)中誤差公式匯總

函數(shù)式函數(shù)的中誤差一般函數(shù)倍數(shù)函數(shù)

和差函數(shù)

線性函數(shù)

算術(shù)平均值

目前二十八頁\總數(shù)四十六頁\編于十八點(diǎn)誤差傳播定律的應(yīng)用用DJ6經(jīng)緯儀觀測三角形內(nèi)角時(shí),每個(gè)內(nèi)角觀測4個(gè)測回取平均,可使得三角形閉合差m15

。例1:要求三角形最大閉合差m15,問用DJ6經(jīng)緯儀觀測三角形每個(gè)內(nèi)角時(shí)須用幾個(gè)測回??=(1+2+3)-180解:由題意:2m=15,則m=7.5每個(gè)角的測角中誤差:由于DJ6一測回角度中誤差為:由角度測量n測回取平均值的中誤差公式:目前二十九頁\總數(shù)四十六頁\編于十八點(diǎn)誤差傳播定律的應(yīng)用例2:試用中誤差傳播定律分析視距測量的精度。解:(1)測量水平距離的精度

基本公式:

求全微分:

水平距離中誤差:

其中:

目前三十頁\總數(shù)四十六頁\編于十八點(diǎn)誤差傳播定律的應(yīng)用例2:試用中誤差傳播定律分析視距測量的精度。解:(2)測量高差的精度基本公式:

求全微分:

高差中誤差:

其中:

目前三十一頁\總數(shù)四十六頁\編于十八點(diǎn)誤差傳播定律的應(yīng)用例3:(1)用鋼尺丈量某正方形一條邊長為求該正方形的周長S和面積A的中誤差.解:(1)周長,

(2)用鋼尺丈量某正方形四條邊的邊長為其中:求該正方形的周長S和面積A的中誤差.

面積,

周長的中誤差為全微分:面積的中誤差為全微分:目前三十二頁\總數(shù)四十六頁\編于十八點(diǎn)解:(1)周長和面積的中誤差分別為例3:(2)用鋼尺丈量某正方形四條邊的邊長為其中:求該正方形的周長S和面積A的中誤差.

(2)周長;周長的中誤差為面積得周長的中誤差為全微分:但由于目前三十三頁\總數(shù)四十六頁\編于十八點(diǎn)▓觀測值的算術(shù)平均值(最或是值)▓用觀測值的改正數(shù)v計(jì)算觀測值的中誤差

(即:白塞爾公式)§6.6同(等)精度直接觀測平差目前三十四頁\總數(shù)四十六頁\編于十八點(diǎn)

一.觀測值的算術(shù)平均值(最或是值、最可靠值)

證明算術(shù)平均值為該量的最或是值:

設(shè)該量的真值為X,則各觀測值的真誤差為1=1-

X2=2-

X

······

n=n-

X對某未知量進(jìn)行了n次觀測,得n個(gè)觀測值1,2,···,n,則該量的算術(shù)平均值為:x==1+2+···+nnn上式等號兩邊分別相加得和:L=目前三十五頁\總數(shù)四十六頁\編于十八點(diǎn)當(dāng)觀測無限多次時(shí):得兩邊除以n:由當(dāng)觀測次數(shù)無限多時(shí),觀測值的算術(shù)平均值就是該量的真值;當(dāng)觀測次數(shù)有限時(shí),觀測值的算術(shù)平均

值最接近真值。所以,算術(shù)平均值是最或是值。L≈X目前三十六頁\總數(shù)四十六頁\編于十八點(diǎn)觀測值改正數(shù)特點(diǎn)二.觀測值的改正數(shù)v

:以算術(shù)平均值為最或是值,并據(jù)此計(jì)算各觀測值的改正數(shù)v,符合[vv]=min的“最小二乘原則”。Vi=L-

i(i=1,2,···,n)特點(diǎn)1——改正數(shù)總和為零:對上式取和:以代入:通常用于計(jì)算檢核L=

nv=nL-

nv

=n-=0v

=0特點(diǎn)2——[vv]符合“最小二乘原則”:則即vv=(x-)2=min=2(x-)=0dvvdx∵(x-)=0nx-=0x=

n目前三十七頁\總數(shù)四十六頁\編于十八點(diǎn)精度評定

比較前面的公式,可以證明,兩式根號內(nèi)的部分是相等的,即在與中:精度評定——用觀測值的改正數(shù)v計(jì)算中誤差一.計(jì)算公式(即白塞爾公式):目前三十八頁\總數(shù)四十六頁\編于十八點(diǎn)證明如下:真誤差:改正數(shù):證明兩式根號內(nèi)相等對上式取n項(xiàng)的平方和由上兩式得其中:目前三十九頁\總數(shù)四十六頁\編于十八點(diǎn)證明兩式根號內(nèi)相等中誤差定義:白塞爾公式:目前四十頁\總數(shù)四十六頁\編于十八點(diǎn)解:該水平角真值未知,可用算術(shù)平均值的改正數(shù)V計(jì)算其中誤差:例:對某水平角等精度觀測了5次,觀測數(shù)據(jù)如下表,求其算術(shù)平均值及觀測值的中誤差。算例1:次數(shù)觀測值VVV備注1764249-4162764240+5253764242+394764246-115764248-39平均764245[V]=0[VV]=60764245±1.74目前四十一頁\總數(shù)四十六頁\編于十八點(diǎn)距離丈量精度計(jì)算例算例2:對某距離用精密量距方法丈量六次,求①該距離的算術(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論