版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省豐寧縣重點達標名校2022-2023學年初三第二次模擬考試卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.2.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值23.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π4.下列幾何體中,其三視圖都是全等圖形的是()A.圓柱 B.圓錐 C.三棱錐 D.球5.下列說法正確的是()A.2a2b與–2b2a的和為0B.的系數(shù)是,次數(shù)是4次C.2x2y–3y2–1是3次3項式D.x2y3與–是同類項6.如果兩圓只有兩條公切線,那么這兩圓的位置關系是()A.內(nèi)切 B.外切 C.相交 D.外離7.我國古代數(shù)學名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.8.若關于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>59.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±110.計算tan30°的值等于()A.3B.33C.33二、填空題(共7小題,每小題3分,滿分21分)11.若a+b=3,ab=2,則a2+b2=_____.12.如圖所示,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k=.13.已知點A(x1,y1),B(x2,y2)在直線y=kx+b上,且直線經(jīng)過第一、三、四象限,當x1<x2時,y1與y2的大小關系為______________.14.若關于x的方程=0有增根,則m的值是______.15.如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.若AB=12,BM=5,則DE的長為_________.16.如圖,在平面直角坐標系中,已知A(﹣2,1),B(1,0),將線段AB繞著點B順時針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標為_____.17.如圖,已知直線,直線m、n與a、b、c分別交于點A、C、E和B、D、F,如果,,,那么______.三、解答題(共7小題,滿分69分)18.(10分)在“優(yōu)秀傳統(tǒng)文化進校園”活動中,學校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術,書法,器樂,要求七年級學生人人參加,并且每人只能參加其中一項活動.教務處在該校七年級學生中隨機抽取了100名學生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請解答下列問題:請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;在參加“剪紙”活動項目的學生中,男生所占的百分比是多少?若該校七年級學生共有500人,請估計其中參加“書法”項目活動的有多少人?學校教務處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?19.(5分)甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數(shù)
眾數(shù)
中位數(shù)
方差
甲
8
8
0.4
乙
9
3.2
(2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差.(填“變大”、“變小”或“不變”).20.(8分)如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.21.(10分)先化簡,再求值:,其中x=﹣1.22.(10分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P為;(2)該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;(3)該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.23.(12分)計算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°24.(14分)(1)計算:|-1|+(2017-π)0-()-1-3tan30°+;(2)化簡:(+)÷,并在2,3,4,5這四個數(shù)中取一個合適的數(shù)作為a的值代入求值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
在兩個直角三角形中,分別求出AB、AD即可解決問題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點睛】本題考查解直角三角形的應用、銳角三角函數(shù)等知識,解題的關鍵是學會利用參數(shù)解決問題.2、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.3、C【解析】
由切線的性質(zhì)定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計算,解題的關鍵是先求出角度再用弧長公式進行計算.4、D【解析】分析:任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,其他的幾何體的視圖都有不同的.詳解:圓柱,圓錐,三棱錐,球中,三視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,故選D.點睛:本題考查簡單幾何體的三視圖,本題解題的關鍵是看出各個圖形的在任意方向上的視圖.5、C【解析】
根據(jù)多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義逐一判斷可得.【詳解】A、2a2b與-2b2a不是同類項,不能合并,此選項錯誤;B、πa2b的系數(shù)是π,次數(shù)是3次,此選項錯誤;C、2x2y-3y2-1是3次3項式,此選項正確;D、x2y3與﹣相同字母的次數(shù)不同,不是同類項,此選項錯誤;故選C.【點睛】本題主要考查多項式、單項式、同類項,解題的關鍵是掌握多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義.6、C【解析】
兩圓內(nèi)含時,無公切線;兩圓內(nèi)切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據(jù)兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關系.熟悉兩圓的不同位置關系中的外公切線和內(nèi)公切線的條數(shù).7、B【解析】
設大馬有匹,小馬有匹,根據(jù)題意可得等量關系:大馬數(shù)+小馬數(shù)=100,大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關系列出方程即可.【詳解】解:設大馬有匹,小馬有匹,由題意得:,故選:B.【點睛】本題主要考查的是由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.8、B【解析】試題解析:∵關于x的一元二次方程方程有兩個不相等的實數(shù)根,∴,即,解得:k<5且k≠1.故選B.9、C【解析】
根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.10、C【解析】tan30°=33二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
根據(jù)a2+b2=(a+b)2-2ab,代入計算即可.【詳解】∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=1.故答案為:1.【點睛】本題考查對完全平方公式的變形應用能力,要熟記有關完全平方的幾個變形公式.12、1.【解析】
先根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得到,再根據(jù)相似三角形的面積比等于相似比的平方,得到用含k的代數(shù)式表示3個陰影部分的面積之和,然后根據(jù)三個陰影部分的面積之和為,列出方程,解方程即可求出k的值.【詳解】解:根據(jù)題意可知,軸,設圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點:反比例函數(shù)綜合題.13、y1<y1【解析】
直接利用一次函數(shù)的性質(zhì)分析得出答案.【詳解】解:∵直線經(jīng)過第一、三、四象限,∴y隨x的增大而增大,∵x1<x1,∴y1與y1的大小關系為:y1<y1.故答案為:y1<y1.【點睛】此題主要考查了一次函數(shù)圖象上點的坐標特征,正確掌握一次函數(shù)增減性是解題關鍵.14、2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1,∴m-1-1=0,∴m=2.15、【解析】
由勾股定理可先求得AM,利用條件可證得△ABM∽△EMA,則可求得AE的長,進一步可求得DE.【詳解】詳解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴=,即=,∴AE=,∴DE=AE﹣AD=﹣12=.故答案為.【點睛】本題主要考查相似三角形的判定和性質(zhì),利用條件證得△ABM∽△EMA是解題的關鍵.16、(2,3)【解析】
作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,證明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結(jié)果.【詳解】如圖,作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,∵點A、B的坐標分別為(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴點A′的坐標為(2,3).故答案為(2,3).【點睛】此題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),點的坐標的確定.解決問題的關鍵是作輔助線構造全等三角形.17、【解析】
由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的長.【詳解】解:由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案為.【點睛】此題考查了平行線分線段成比例定理.題目比較簡單,解題的關鍵是注意數(shù)形結(jié)合思想的應用.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)40%;(3)105;(4).【解析】
(1)先求出參加活動的女生人數(shù),進而求出參加武術的女生人數(shù),即可補全條形統(tǒng)計圖,再分別求出參加武術的人數(shù)和參加器樂的人數(shù),即可求出百分比;(2)用參加剪紙中男生人數(shù)除以剪紙的總?cè)藬?shù)即可得出結(jié)論;(3)根據(jù)樣本估計總體的方法計算即可;(4)利用概率公式即可得出結(jié)論.【詳解】(1)由條形圖知,男生共有:10+20+13+9=52人,∴女生人數(shù)為100-52=48人,∴參加武術的女生為48-15-8-15=10人,∴參加武術的人數(shù)為20+10=30人,∴30÷100=30%,參加器樂的人數(shù)為9+15=24人,∴24÷100=24%,補全條形統(tǒng)計圖和扇形統(tǒng)計圖如圖所示:(2)在參加“剪紙”活動項目的學生中,男生所占的百分比是100%=40%.答:在參加“剪紙”活動項目的學生中,男生所占的百分比為40%.(3)500×21%=105(人).答:估計其中參加“書法”項目活動的有105人.(4).答:正好抽到參加“器樂”活動項目的女生的概率為.【點睛】此題主要考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.19、(1)填表見解析;(2)理由見解析;(3)變?。窘馕觥?/p>
(1)根據(jù)眾數(shù)、平均數(shù)和中位數(shù)的定義求解:(2)方差就是和中心偏離的程度,用來衡量一批數(shù)據(jù)的波動大小(即這批數(shù)據(jù)偏離平均數(shù)的大?。┰跇颖救萘肯嗤那闆r下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定.(3)根據(jù)方差公式求解:如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。驹斀狻吭囶}分析:試題解析:解:(1)甲的眾數(shù)為8,乙的平均數(shù)=(5+9+7+10+9)=8,乙的中位數(shù)為9.故填表如下:平均數(shù)
眾數(shù)
中位數(shù)
方差
甲
8
8
8
0.4
乙
8
9
9
3.2
(2)因為他們的平均數(shù)相等,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽;(3)如果乙再射擊1次,命中8環(huán),平均數(shù)不變,根據(jù)方差公式可得乙的射擊成績的方差變?。键c:1.方差;2.算術平均數(shù);3.中位數(shù);4.眾數(shù).20、樹高為5.5米【解析】
根據(jù)兩角相等的兩個三角形相似,可得△DEF∽△DCB,利用相似三角形的對邊成比例,可得,代入數(shù)據(jù)計算即得BC的長,由AB=AC+BC,即可求出樹高.【詳解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:樹高為5.5米.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.21、-2.【解析】
根據(jù)分式的運算法化解即可求出答案.【詳解】解:原式=,當x=﹣1時,原式=.【點睛】熟練運用分式的運算法則.22、(1);(1);(3);【解析】
(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結(jié)果數(shù),再找出一個徑賽項目和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年無紡環(huán)保袋環(huán)保產(chǎn)業(yè)綠色發(fā)展戰(zhàn)略合同3篇
- 2025年物業(yè)管理培訓課程基本知識問答及實操演練合同3篇
- 2025年度門衛(wèi)服務區(qū)域拓展與市場開發(fā)合同4篇
- 2025年度汽車零部件產(chǎn)品承包經(jīng)營合同樣本4篇
- 基于MQTT協(xié)議的農(nóng)田土壤水熱信息監(jiān)測系統(tǒng)研究
- 2025年度商業(yè)綜合體地板磚一體化解決方案合同4篇
- 2025年度企業(yè)年會場地使用合同4篇
- 2025年度大型養(yǎng)殖場勞動力派遣與培訓服務合同范本4篇
- 2025年度瓷磚行業(yè)綠色生產(chǎn)設備研發(fā)與制造合同4篇
- 2025年度大型數(shù)據(jù)中心基礎設施建設合同范本及網(wǎng)絡安全保障4篇
- 2024年公司保密工作制度(四篇)
- 重慶市康德卷2025屆高一數(shù)學第一學期期末聯(lián)考試題含解析
- 建筑結(jié)構課程設計成果
- 雙梁橋式起重機小車改造方案
- 基于AR的無人機操作訓練系統(tǒng)
- XX農(nóng)貿(mào)市場物業(yè)公司管理方案
- 纖維增強復合材料 單向增強材料Ⅰ型-Ⅱ 型混合層間斷裂韌性的測定 編制說明
- 湖北省襄陽市數(shù)學中考2024年測試試題及解答
- YYT 0308-2015 醫(yī)用透明質(zhì)酸鈉凝膠
- GB/T 44189-2024政務服務便民熱線運行指南
- YYT 0698.1-2011 最終滅菌醫(yī)療器械包裝材料 第1部分 吸塑包裝共擠塑料膜 要求和試驗方法
評論
0/150
提交評論