2022屆高考數(shù)學(xué)第二輪專題復(fù)習(xí)系列集合與簡易邏輯新人教版_第1頁
2022屆高考數(shù)學(xué)第二輪專題復(fù)習(xí)系列集合與簡易邏輯新人教版_第2頁
2022屆高考數(shù)學(xué)第二輪專題復(fù)習(xí)系列集合與簡易邏輯新人教版_第3頁
2022屆高考數(shù)學(xué)第二輪專題復(fù)習(xí)系列集合與簡易邏輯新人教版_第4頁
2022屆高考數(shù)學(xué)第二輪專題復(fù)習(xí)系列集合與簡易邏輯新人教版_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高三數(shù)學(xué)第二輪專題復(fù)習(xí)系列1--會合與簡略邏輯一、【重點(diǎn)知識構(gòu)造】會合及元素會合的基本觀點(diǎn)會合分類及表示會合會合與會合的關(guān)系子集、包含與相等交集、并集、補(bǔ)集會合的應(yīng)用解含絕對值符號、一元二次、簡單分式不等式邏輯聯(lián)絡(luò)詞命題簡單命題與復(fù)合命題簡略邏輯四種命題及其關(guān)系充分必要條件二、【高考要求】理解會合、子集、交集、并集、補(bǔ)集的觀點(diǎn)認(rèn)識空集和全集的意義,認(rèn)識屬于、包含、相等關(guān)系的意義,能掌握相關(guān)的述語和符號,能正確地表示一些較簡單的會合2.

理解|ab|cc>0型不等式的觀點(diǎn),并掌握它們的解法認(rèn)識二次函數(shù)、一元二次不等式及一元二次方程三者之間的關(guān)系,掌握一元二次不等式及簡單分式不等式的解法理解邏輯聯(lián)絡(luò)詞“或”、“且”、“非”的含義;理解四種命題及其相互關(guān)系;掌握充要條件的意義和判斷學(xué)會運(yùn)用數(shù)形聯(lián)合、分類議論的思想方法剖析和解決相關(guān)會合問題,形成優(yōu)秀的思維品質(zhì);學(xué)會判斷和推理,解決簡略邏輯問題,培養(yǎng)邏輯思維能力三、【高考熱點(diǎn)剖析】會合與簡略邏輯是高中數(shù)學(xué)的重要基礎(chǔ)知識,是高考的必考內(nèi)容本章知識的高考命題熱點(diǎn)有以下兩個(gè)方面:一是會合的運(yùn)算、會合的相關(guān)述語和符號、會合的簡單應(yīng)用、判斷命題的真假、四種命題的關(guān)系、充要條件的判斷等作基礎(chǔ)性的考察,題型多以選擇、填空題的形式出現(xiàn);二是以函數(shù)、方程、三角、不等式等知識為載體,以會合的語言和符號為表現(xiàn)形式,聯(lián)合簡略邏輯知識考察學(xué)生的數(shù)學(xué)思想、數(shù)學(xué)方法和數(shù)學(xué)能力,題型常以解答題的形式出現(xiàn)四、【高考復(fù)習(xí)建議】觀點(diǎn)多是本章內(nèi)容的一大特點(diǎn),一是要抓好基本觀點(diǎn)的過關(guān),一些重點(diǎn)知識(如子、交、并、補(bǔ)集及充要條件等)要深刻理解和掌握;二是各樣數(shù)學(xué)思想和數(shù)學(xué)方法在本章題型中都有較好體現(xiàn),特別是數(shù)形聯(lián)合思想,要善于運(yùn)用韋氏圖、數(shù)軸、函數(shù)圖象幫助剖析和理解會合問題五、【例題】【例1】設(shè),y,{|ax23x1},B{|by23y1},求會合A與B之間的關(guān)xRAab系。解:由ax23x1(x3)255,得A={x|x5}2444by23y1(y3)2524A=B【例2】已知會合A=23x100},會合B={x|p1x2p1},若BA,求實(shí)數(shù){x|xp12p1y3p12p1p22p12p3a1}A{(x,y)|22p15x{(x,y)|(a21)x(a1)y30}ABy3(a1)(x2)(2,3)A(2,3)B(a21)2(a1)330{32x,1,3}{1,x2}AB{32x,1,3}ABABAx23x232xx3x332x1{x|103xx20}{x|x22x2m0}ABB的值。解:不難求出{x|2x5},由ABBBA,又x22x2m0,48mA=①若48m0,即,則BA②若48m0,即,B{x|112mx112m},∴112m241112m5m2故由①②知:m的取值范圍是m[4,)注:不要忽略空集是任何會合的子集?!纠?】已知會合A={x|x2axa2190},B={x|log2(x25x8)1},C=|2280}xx,x若AB與AC同時(shí)建立,求實(shí)數(shù)a的值。解:易求得B=,C={2,4},由AB知A與B的交集為非空集。故2,3兩數(shù)中起碼有一適合方程x2axa2190又AC,∴,即93aa2190得,a=5或a=-2當(dāng)a=5時(shí),A=,于是AC{2},故a=5舍去。當(dāng)a=-2時(shí),A=,于是AB{3},∴a=-2?!纠?】A{x|x23x20},B{x|2x2ax20},A∪B=A,求a的取值組成的集合。解:∵A∪B=A,∴BA,當(dāng)B時(shí)a2160,∴-4A{x|x23x20}{1,2}B{1,2}AA{x|x23x20}B{x|ax20}BA2B2x2(3a7)x(3a2a2)0(2xa1)(x2a3)0(a1)(2a3)0a1a3a12a3a15(a1)532aa12222a1x32a}a32a3a15a1)532aa1{x|222(42a1}2{x|32axP:a(x2)10Q:(x1)2a(x2)1P、Q2A{x|a(x2)10},B{x|(x1)2a(x2)1}P、QABa(x2)10x21x21aa1a2(x1)2a(x2)1x2(2a)x2a0(xa)(x2)0x211)a11aa(220a21a2P、Qx或xaaaa213,且x2}a2x21x{x|x2或2xa}a2P、Qx{x|xaa2xa或x2P、Qx{x|xa或21x2}p:|5x1|aq:21101a11aa2x3x5255x1a5x1ax1ax1a2x23x10x1x3pq5525p:|1x1|2,q:x22x1m20(m0)|1x1|2,2x1033x22x1m20(m0)1mx1m(m0)x2x10x1mx1m(m0)1m,1{x|x2,或x10}{x|x1m,或x1m(m0)}1m,m3f(x)logax100m,0a{a|2012aa2}f(x)logax|f(x)|1f(2x)|f(x)|1|f(2x)|yoxa{a|2012aa2}a212a2002a10ylogax|f(x)|1f(2x)|logax|loga2x10x1logax0logaxloga2x1loga210x1logax0logaxloga2x1loga2x1xa1xa22{x|0xa}|f(x)|1|f(2x)||logax||loga2x|10x124logaxloga2x0logaxloga2x1loga2x1loga2x1x12a1x11x1logax0loga2xlogaxloga2x1loga212a441x10logaxloga2xlogaxloga2x1loga2x1xa1xa422{x|1xa}(CuM)(CuN)(CuM)(CuN)(CuA)(CuB)(CUA)BA(CUB)2a2(CuM)(CuN)(CuM)(CuN){x|2x2}{x|2x3}{x|1x2}{x|2x1}{x|2x3}11(CUM)(CUP)(CUM)(CUP){x|(x4)(2x)0}(CUP)(CUP)(CUP)(CUQ)2n4n2{x|0x1}4A{x|0x4}4{x|4xxax}A{x|0x1a2}1a21a3{x||x1(a1)2|1(a1)2}{x|x23(a1)x2(3a1)0}A{x|2axa21}22x23(a1)x2(3a1)0(x2)[x(3a1)]03aB{x|2x3a1}2a21a3a213a13aB{2}3aB{3a1x2}2a3a1a1a1a[1,3]{y|yx22mx4,xR}a212{x|log32xlog1x0}ABB{x|1x3}A{x|x4m2}4m233m(,1][1,){y|y2(a2a1)ya(a21)0}{y|y1x2x5,0x3}AB22{x|2x4}y2(a2a1)ya(a21)0(ya)(ya21)0a21a{x|xa21或xa}ABa214a(3,3)(2,)A{x|x2pxq0}B{x|qx2px10}ABACuB{2}2Bx2pxq0qx2px10x0Ax00x02px0q0q(1)2p1101Bx0A1Bx01x01x01B{1,1}x0x0x0x0x02p(12)1;1}(a1)2(a1)2x2B{1,x3(a1)x2(3a1)0ABφq1(2)2.222A{x|2axa21}3aABφ3a3a3a2aa2121a13a3a2a2或3a1a2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論